Skip to main content
Log in

The role of the covalent interaction in the formation of the electronic structure of Au- and Cu-intercalated graphene on Ni(111)

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A study is reported of the role played by covalent interaction in the coupling of graphene formed on Ni(111) to the Ni substrate and after intercalation of Au and Cu monolayers underneath the graphene. Covalent interaction of the graphene π states with d states of the underlying metal (Ni, Au, Cu) has been shown to bring about noticeable distortion of the dispersion relations of the graphene electronic π states in the region of crossing with d states, which can be described in terms of avoided-crossing effects and formation of bonding and antibonding d-π states. The overall graphene coupling to a substrate is mediated by the energy and occupation of the hybridized states involved. Because graphene formed directly on the Ni(111) surface has only bonding-type occupied states, the coupling to the substrate is very strong. Interaction with intercalated Au and Cu layers makes occupation of states of the antibonding and bonding types comparable, which translates into a weak resultant overall coupling of graphene to the substrate. As a result, after intercalation of Au atoms, the electronic structure becomes similar to that of quasi-free-standing graphene, with linear dispersion of π states at the K point of the Brillouin zone and the Dirac point localized close to the Fermi level. Intercalation of Cu atoms under the graphene monolayer results, besides generation of covalent interaction, in a slight charge transport, with a partial occupation of the previously unoccupied π* states and the Dirac point shifted by 0.35 eV toward increasing binding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).

    Article  ADS  Google Scholar 

  3. C. W. Banakker, Rev. Mod. Phys. 80, 1337 (2008).

    Article  ADS  Google Scholar 

  4. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).

    Article  Google Scholar 

  5. A. Bostwick, T. Ohta, Th. Seyler, K. Horn, and E. Rotenberg, Nat. Phys. 3, 36 (2007).

    Article  Google Scholar 

  6. A. Bostwick, T. Ohta, J. McChesney, K. V. Emtsev, Th. Seyler, K. Horn, and E. Rotenberg, New J. Phys. 9, 385 (2007).

    Article  ADS  Google Scholar 

  7. A. M. Shikin, D. Farias, and K. H. Rieder, Europhys. Lett. 44, 44 (1998).

    Article  ADS  Google Scholar 

  8. A. M. Shikin, D. Farias, V. K. Adamchuk, and K. H. Rieder, Surf. Sci. 424, 155 (1999).

    Article  ADS  Google Scholar 

  9. A. M. Shikin, G. V. Prudnikova, V. K. Adamchuk, W.-H. Soe, K.-H. Rieder, S. L. Molodtsov, and C. Laubschat, Phys. Solid State 44(4), 677 (2002).

    Article  ADS  Google Scholar 

  10. D. Farías, K. H. Rieder, A. M. Shikin, V. K. Adamchuk, T. Tanaka, and C. Oshima, Surf. Sci. 454–456, 437 (2000).

    Article  Google Scholar 

  11. A. Varykhalov, J. Sanchez-Barriga, A. M. Shikin, C. Bismas, E. Veskovo, A. Rybkin, D. Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008).

    Article  ADS  Google Scholar 

  12. A. M. Shikin, V. K. Adamchuk, and K.-H. Rieder, Phys. Solid State 51(11), 2390 (2009).

    Article  ADS  Google Scholar 

  13. Yu. S. Dedkov, A. M. Shikin, V. K. Adamchuk, S. L. Molodtsov, C. Laubschat, A. Bauer, and G. Kaindl, Phys. Rev. B: Condens. Matter 64, 045503 (2001).

    Article  Google Scholar 

  14. A. M. Shikin, G. V. Prudnikova, V. K. Adamchuk, F. Moresco, and K.-H. Rieder, Phys. Rev. B: Condens. Matter 62, 13202 (2000).

    Article  ADS  Google Scholar 

  15. A. G. Starodubov, M. A. Medvetskii, A. M. Shikin, and V. K. Adamchuk, Phys. Solid State 46(7), 1340 (2004).

    Article  ADS  Google Scholar 

  16. A. G. Starodubov, M. A. Medvetskii, A. M. Shikin, G. V. Prudnikova, and V. K. Adamchuk, Phys. Solid State 44(4), 681 (2002).

    Article  ADS  Google Scholar 

  17. Th. Seyller, K. V. Emtsev, K. Gao, F. Speck, L. Ley, A. Tadich, L. Broekman, J. D. Riley, R. C. G. Leckey, O. Rader, A. Varykhalov, and A. M. Shikin, Surf. Sci. 600, 3906 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Popova.

Additional information

Original Russian Text © A.A. Popova, A.M. Shikin, A.G. Rybkin, D.E. Marchenko, O.Yu. Vilkov, A.A. Makarova, A.Yu. Varykhalov, O. Rader, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 12, pp. 2409–2413.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popova, A.A., Shikin, A.M., Rybkin, A.G. et al. The role of the covalent interaction in the formation of the electronic structure of Au- and Cu-intercalated graphene on Ni(111). Phys. Solid State 53, 2539–2544 (2011). https://doi.org/10.1134/S1063783411120195

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411120195

Keywords

Navigation