Skip to main content
Log in

Specific features of electrical conductivity of V3O5 single crystals

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electrical conductivity of V3O5 single crystals has been investigated over a wide temperature range, including the region of existence of the metallic phase and the region of the transition from the metallic phase to the insulating phase. It has been shown that the low electrical conductivity of metallic V3O5 is caused, on the one hand, by a lower concentration of electrons and, on the other hand, by a strong electronelectron correlation whose role with decreasing temperature increases as the phase transition temperature is approached. The temperature dependence of the electrical conductivity of the insulating phase of V3O5 has been explained in the framework of the theory of hopping conduction, which takes into account the effect of thermal vibrations of atoms on the resonance integral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Andersson, Acta Chem. Scand. 8, 1599 (1954).

    Article  Google Scholar 

  2. H. Horiuchi, M. Tokonami, N. Morimoto, K. Nagasawa, Y. Bando, and T. Takada, Mater. Res. Bull. 6, 833 (1971).

    Article  Google Scholar 

  3. S. Asbrink, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 36, 1332 (1980).

    Article  Google Scholar 

  4. S.-H. Hong and S. Asbrink, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 38, 713 (1982).

    Article  Google Scholar 

  5. V. Bryukner, G. Vikh’, E. I. Terukov, and F. A. Chudnovskii, Sov. Phys. Solid State 17(7), 1452 (1975).

    Google Scholar 

  6. E. I. Terukov, F. A. Chudnovskii, W. Reichelt, H. Oppermann, W. Bruckner, and W. Moldenhauer, Phys. Status Solidi A 37, 541 (1976).

    Article  ADS  Google Scholar 

  7. F. A. Chudnovskii, E. I. Terukov, and D. I. Khomskii, Solid State Commun. 25, 573 (1978).

    Article  ADS  Google Scholar 

  8. N. F. Kartenko, E. I. Terukov, and F. A. Chudnovskii, Sov. Phys. Solid State 18 (7), 1092 (1976).

    Google Scholar 

  9. H. Okinaka, K. Kosuge, S. Kachi, M. Takano, and T. Takada, J. Phys. Soc. Jpn. 32, 1148 (1972).

    Article  ADS  Google Scholar 

  10. A. C. Gossard, D. J. Di Salvo, L. C. Erich, J. P. Remeika, H. Yasuoka, K. Kosuge, and S. Kachi, Phys. Rev. B: Solid State 10, 4178 (1974).

    Article  ADS  Google Scholar 

  11. P. B. Allen, R. M. Wentscovitch, W. W. Schulz, and P. C. Canfield, Phys. Rev. B: Condens. Matter 48, 4359 (1993).

    Article  ADS  Google Scholar 

  12. V. N. Andreev, F. A. Chudnovskii, and V. A. Klimov, JETP Lett. 60(9), 647 (1994).

    ADS  Google Scholar 

  13. E. J. W. Vervey, P. W. Haayman, and F. C. Remeijn, J. Chem. Phys. 15, 181 (1947).

    Article  ADS  Google Scholar 

  14. J. B. Sokoloff, Phys. Rev. B: Solid State 5, 4496 (1972).

    Article  ADS  Google Scholar 

  15. N. F. Mott, Metal-Insulator Transitions (Tailor and Francis, London, 1974).

    Google Scholar 

  16. V. N. Andreev and V. A. Klimov, Phys. Solid State 51(11), 2235 (2009).

    Article  ADS  Google Scholar 

  17. V. N. Andreev, F. A. Chudnovskiy, S. Perooly, and J. M. Honig, Phys. Status Solidi B 234, 623 (2002).

    Article  ADS  Google Scholar 

  18. V. N. Andreev, F. A. Chudnovskiy, J. M. Honig, and P. A. Metcalf, Phys. Rev. B: Condens. Matter 70, 235124 (2004).

    Article  ADS  Google Scholar 

  19. V. N. Andreev and V. A. Klimov, Phys. Solid State 49(12), 2251 (2007).

    Article  ADS  Google Scholar 

  20. V. V. Bryksin, Sov. Phys. JETP 73(5), 861 (1991).

    Google Scholar 

  21. C. M. Hurd, J. Phys. C: Solid State Phys. 18, 6484 (1985).

    Article  ADS  Google Scholar 

  22. K. Nagasawa, Mater. Res. Bull. 6, 853 (1971).

    Article  Google Scholar 

  23. H. Oppermann, W. Reichelt, and E. Wolf, J. Cryst. Growth 31, 49 (1975).

    Article  ADS  Google Scholar 

  24. V. N. Andreev, V. A. Pikulin, and D. I. Frolov, Phys. Solid State 42(2), 330 (2000).

    Article  ADS  Google Scholar 

  25. V. N. Andreev and F. A. Chudnovskii, Sov. Phys. Solid State 17(10), 1966 (1975).

    Google Scholar 

  26. V. N. Andreev and V. A. Klimov, Phys. Solid State 48(12), 2328 (2006).

    Article  ADS  Google Scholar 

  27. D. I. Khomskii, Sov. Phys. Solid State 19(10), 1850 (1977).

    Google Scholar 

  28. F. A. Chudnovskii, J. Phys. C: Solid State Phys. 11, L99 (1978).

    Article  ADS  Google Scholar 

  29. A. G. Aronov, D. N. Mirlin, I. I. Reshina, and F. A. Chudnovskii, Sov. Phys. Solid State 19(1), 110 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Andreev.

Additional information

Original Russian Text © V.N. Andreev, V.A. Klimov, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 12, pp. 2303–2307.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, V.N., Klimov, V.A. Specific features of electrical conductivity of V3O5 single crystals. Phys. Solid State 53, 2424–2430 (2011). https://doi.org/10.1134/S106378341112002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341112002X

Keywords

Navigation