Skip to main content
Log in

Formation of nanodomain ensembles during polarization reversal in Sr0.61Ba0.39Nb2O6: Ce single crystals

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of the study of nano- and microdomain structure evolution in single crystals of relaxor ferroelectric strontium barium niobate Sr0.61Ba0.39Nb2O6 doped by cerium are presented. It was shown that the initial nanodomain structure represents a self-similar three-dimensional maze. The fractal dimension and average period were revealed. It was demonstrated that application of series of alternating electric field pulses makes it possible to produce a single-domain state in the surface layer. The features of the growth and “merging,” as well as the shape of ensembles of isolated nanodomains formed during switching from the single-domain state, were investigated. The formation of the nanodomain ensembles was considered as a result of the self-organized discrete switching controlled by determined nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  2. P. B. Jamieson, S. C. Abrahams, and J. L. Bernstein, J. Chem. Phys. 48, 5048 (1963).

    Article  ADS  Google Scholar 

  3. Yu. S. Kuz’minov, Ferroelectric Crystals for Laser Radiation Control (Nauka, Moscow, 1982; Adam Hilger, Bristol, 1990).

    Google Scholar 

  4. R. R. Neurgaonkar and L. E. Cross, Mater. Res. Bull. 21, 893 (1986).

    Article  Google Scholar 

  5. R. Guo, J. E. Wang, J. M. Povoa, and A. S. Bhalla, Mater. Lett. 42, 130 (2000).

    Article  Google Scholar 

  6. M. D. Ewbank, R. R. Neurgaonkar, W. K. Coy, and J. Feinberg, J. Appl. Phys. 62, 374 (1987).

    Article  ADS  Google Scholar 

  7. J. J. Romero, C. Arago, J. A. Gonzalo, D. Jaque, and J. Garcia Sole, J. Appl. Phys. 93, 3111 (2003).

    Article  ADS  Google Scholar 

  8. H. Arndt, T. V. Dung, and G. Schmidt, Ferroelectrics 97, 247 (1989).

    Article  Google Scholar 

  9. P. Lehnen, W. Kleemann, Th. Woike, and R. Pankrath, Phys. Rev. B: Condens. Matter 64, 224109 (2001).

    Article  ADS  Google Scholar 

  10. K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, and A. Gruverman, Appl. Phys. Lett. 81, 2044 (2002).

    Article  ADS  Google Scholar 

  11. J. Dec, V. V. Shvartsman, and W. Kleemann, Appl. Phys. Lett. 89, 212901 (2006).

    Article  ADS  Google Scholar 

  12. L. Tian, D. A. Scrymgeour, and V. Gopalan, J. Appl. Phys. 97, 114111 (2005).

    Article  ADS  Google Scholar 

  13. V. Ya. Shur, D. V. Pelegov, V. A. Shikhova, D. K. Kuznetsov, E. V. Nikolaeva, E. L. Rumyantsev, O. V. Yakutova, and T. Granzow, Ferroelectrics 374, 33 (2008).

    Article  Google Scholar 

  14. V. Ya. Shur, D. V. Pelegov, V. A. Shikhova, D. K. Kuznetsov, E. V. Nikolaeva, E. L. Rumyantsev, O. V. Yakutova, and T. Granzow, Phys. Solid State 52(2), 346 (2010).

    Article  ADS  Google Scholar 

  15. N. R. Ivanov, T. R. Volk, L. I. Ivleva, S. P. Chumakova, and A. V. Ginzberg, Crystallogr. Rep. 47(6), 1023 (2002).

    Article  ADS  Google Scholar 

  16. K. Matyjasek, K. Wolska, S. M. Kaczmarek, and R. Z. Rogowski, J. Phys.: Condens. Matter 20, 295218 (2008).

    Article  Google Scholar 

  17. L. I. Ivleva, Bull. Russ. Acad. Sci.: Phys. 73(10), 1338 (2009).

    Article  Google Scholar 

  18. E. I. Shishkin, V. Ya. Shur, F. Schlaphof, and L. M. Eng, Appl. Phys. Lett. 88, 252902 (2006).

    Article  ADS  Google Scholar 

  19. T. R. Volk, V. Yu. Salobutin, L. I. Ivleva, N. M. Polozkov, R. Pankrath, and M. Woehlecke, Phys. Solid State 42(11), 2129 (2000).

    Article  ADS  Google Scholar 

  20. J. Feder, Fractals (Springer, Berlin, 1988; Mir, Moscow, 1991).

    MATH  Google Scholar 

  21. J. Russ, Fractal Surfaces (Plenum, New York, 1994).

    Google Scholar 

  22. V. Ya. Shur, in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, Ed. by Z.-G. Ye (Woodhead, Cambridge, 2008), p. 622.

    Chapter  Google Scholar 

  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, London, 1959; Nauka, Moscow, 1973), p. 209.

    MATH  Google Scholar 

  24. R. C. Miller and A. Savage, Phys. Rev. 115, 1176 (1959).

    Article  ADS  Google Scholar 

  25. D. J. Whitehouse, Surfaces and Their Measurement (Butterworth-Heinemann, Oxford, 2004; Intellekt, Dolgoprudnyi, Moscow Region, 2009).

    Google Scholar 

  26. V. Ya. Shur, J. Mater. Sci. 41, 199 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Shur.

Additional information

Original Russian Text © V.Ya. Shur, V.A. Shikhova, D.V. Pelegov, A.V. Ievlev, L.I. Ivleva, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 11, pp. 2195–2199.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shur, V.Y., Shikhova, V.A., Pelegov, D.V. et al. Formation of nanodomain ensembles during polarization reversal in Sr0.61Ba0.39Nb2O6: Ce single crystals. Phys. Solid State 53, 2311–2315 (2011). https://doi.org/10.1134/S106378341111028X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341111028X

Keywords

Navigation