Skip to main content
Log in

Effect of alloying elements and impurities on interface properties in aluminum alloys

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The segregation energies of B, Si, P, Cr, Ni, Zr, and Mg on the special grain boundary (GB) Σ5 (210)[100] and on the open (210) surface of aluminum have been determined and the GB splitting energy has been calculated by the density functional theory methods. It has been shown that all elements listed above enrich the GB; for B, Si, P, Cr, Ni and Zr, Mg, interstitial and substitutional sites are preferred, respectively. The effect of alloying elements on the GB binding has been estimated using the parameter η equal to the change in the fracture work of the aluminum GB when adding alloying element atoms. From the viewpoint of strengthening the GB binding forces, Zr, Cr, Ni, and Mg are efficient, Si and B are neutral and phosphorus weakens GBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ogata, H. Kitagawa, Y. Maegawa, and K. Saitoh, Comput. Mater. Sci. 7 271 (1994).

    Article  Google Scholar 

  2. G. Lu and N. Kioussis, Phys. Rev. B: Condens. Matter 64, 024101 (2001).

    Article  ADS  Google Scholar 

  3. T. Uesugi, Y. Inoue, Y. Takogawa, and K. Higashi, Mater. Sci. Forum 551–552, 31 (2007).

    Google Scholar 

  4. T. Uesugi and K. Higashi, Mater. Sci. Forum 654–656, 942 (2010).

    Article  Google Scholar 

  5. G. Lu, Y. Zhang, S. Deng, T. Wang, M. Kohyama, R. Yamamoto, and F. Liu, Phys. Rev. B: Condens. Matter 73, 224115 (2006).

    Article  ADS  Google Scholar 

  6. Y. Zhang, G. Lu, H. Zhang, T. Wang, S. Deng, and X. Hu, Mater. Sci. Forum 546–549, 829 (2007).

    Article  Google Scholar 

  7. Y. Zhang, G. Lu, T. Wang, S. Deng, X. Shu, M. Kohyama, and R. Yamamoto, J. Phys.: Condens. Matter 18, 5121 (2006).

    Article  ADS  Google Scholar 

  8. I. F. Kolobnev, Heat Resistance of Cast Aluminum Alloys (Metallurgiya, Moscow, 1973) [in Russian].

    Google Scholar 

  9. Aluminium: Properties and Physical Metallurgy, Ed. by J. Hath (American Society for Metals, Metals Park, Ohio, United States, 1984).

    Google Scholar 

  10. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys (Moscow Institute of Steel and Alloys, Moscow, 2005) [in Russian].

    Google Scholar 

  11. A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, Grain Boundaries in Metals (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  12. B. B. Straumal, Phase Transitions on the Grain Boundaries (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  13. B. S. Bokshtein, Ch. V. Kopetskii, and L. S. Shvindlerman, Thermodynamics and Kinetics of Grain Boundaries in Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  14. J. R. Rice and R. Thomson, Philos. Mag. 29, 73 (1974).

    Article  ADS  Google Scholar 

  15. J. R. Rice and J.-S. Wang, Mater. Sci. Eng., A 107, 23 (1989).

    Article  Google Scholar 

  16. Y. Mishin, M. Asta, and Ju Li, Acta Mater. 58, 1117 (2010).

    Article  Google Scholar 

  17. D. I. Thomson, V. Heine, M. C. Payne, N. Marzari, and M. W. Finnis, Acta Mater. 48, 3623 (2000).

    Article  Google Scholar 

  18. A. V. Logunov, I. M. Razumovskii, V. N. Larionov, O. G. Ospennikova, V. A. Poklad, A. V. Ruban, and V. I. Razumovskiy, Perspekt. Mater., No. 2, 10 (2008).

  19. A. V. Logunov, I. M. Razumovskii, G. B. Stroganov, A. V. Ruban, V. I. Razumovskiy, V. N. Larionov, O. G. Ospennikova, and V. A. Poklad, Dokl. Phys. 53(8), 438 (2008).

    Article  ADS  Google Scholar 

  20. I. M. Razumovskii, A. V. Ruban, V. I. Razumovskiy, A. V. Logunov, V. N. Larionov, O. G. Ospennikova, V. A. Poklad, and B. Johansson, Mater. Sci. Eng., A 497, 18 (2008).

    Article  Google Scholar 

  21. P. E. Blöhl, Phys. Rev. B: Condens. Matter 50, 17953 (1994).

    Article  ADS  Google Scholar 

  22. G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999).

    Article  ADS  Google Scholar 

  23. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993).

    Article  ADS  Google Scholar 

  24. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 49, 14251 (1994).

    Article  ADS  Google Scholar 

  25. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    Article  ADS  Google Scholar 

  26. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  27. H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13, 5188 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  28. H. Gleiter and B. Chalmers, Prog. Mater. Sci. 16, 43 (1972).

    Article  Google Scholar 

  29. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996).

    Google Scholar 

  30. M. S. S. Brooks and B. Johansson, J. Phys. F: Met. Phys. 13, L197 (1983).

    Article  ADS  Google Scholar 

  31. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals (North-Holland, Amsterdam, 1988).

    Google Scholar 

  32. W. R. Tyson and W. R. Miller, Surf. Sci. 62, 267 (1977).

    Article  ADS  Google Scholar 

  33. G. C. Hasson and C. Goux, Scr. Metall. 5, 889 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Razumovskiy.

Additional information

Original Russian Text © V.I. Razumovskiy, Yu.Kh. Vekilov, I.M. Razumovskii, A.V. Ruban, V.N. Butrim, V.N. Mironenko, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 11, pp. 2081–2085.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razumovskiy, V.I., Vekilov, Y.K., Razumovskii, I.M. et al. Effect of alloying elements and impurities on interface properties in aluminum alloys. Phys. Solid State 53, 2189–2193 (2011). https://doi.org/10.1134/S1063783411110266

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411110266

Keywords

Navigation