Skip to main content
Log in

Structure, electrical resistivity, and thermal conductivity of beech wood biocarbon produced at carbonization temperatures below 1000°C

  • Thermal Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on measurements of the thermal conductivity κ and the electrical resistivity ρ in the temperature range 5–300 K, and, at 300 K, on X-ray diffraction studies of high-porosity (with a channel pore volume fraction of ∼47 vol %) of the beech wood biocarbon prepared by pyrolysis (carbonization) of tree wood in an argon flow at the carbonization temperature T carb = 800°C. It has been shown that the biocarbon template of the samples studied represents essentially a nanocomposite made up of amorphous carbon and nanocrystallites—“graphite fragments” and graphene layers. The sizes of the nanocrystallites forming these nanocomposites have been determined. The dependences ρ(T) and κ(T) have been measured for the samples cut along and perpendicular to the tree growth direction, thus permitting determination of the magnitude of the anisotropy of these parameters. The dependences ρ(T) and κ(T), which have been obtained for beech biocarbon samples prepared at T carb = 800°C, are compared with the data amassed by us earlier for samples fabricated at T carb = 1000 and 2400°C. The magnitude and temperature dependence of the phonon thermal conductivity of the nanocomposite making up the beech biocarbon template at T carb = 800°C have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Hernandez, I. Hernandez-Calderon, C. A. Luengo, and R. Tsu, Carbon 20, 201 (1982).

    Article  Google Scholar 

  2. A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, D. Domíngez-Rodriguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1, 56 (2004).

    Article  Google Scholar 

  3. V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51(11), 2247 (2009).

    Article  ADS  Google Scholar 

  4. V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).

    Article  Google Scholar 

  5. T. E. Wilkes, J. V. Pastor, J. Llorca, and K. T. Faber, J. Mater. Res. 23, 1732 (2008).

    Article  ADS  Google Scholar 

  6. V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martinez-Fernandez, Phys. Solid State 53(2), 276 (2011).

    Article  ADS  Google Scholar 

  7. P. Geil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).

    Article  Google Scholar 

  8. C. E. Byrne and D. C. Nagle, Carbon 35, 267 (1997).

    Article  Google Scholar 

  9. C. Zollfrank and H. Siber, J. Eur. Ceram. Soc. 24, 495 (2004).

    Article  Google Scholar 

  10. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sha- renkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48(3), 441 (2006).

    Article  ADS  Google Scholar 

  11. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50(12), 2245 (2008).

    Article  ADS  Google Scholar 

  12. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 51(10), 2023 (2009).

    Article  ADS  Google Scholar 

  13. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52(6), 1115 (2010).

    Article  ADS  Google Scholar 

  14. A. K. Kercher and D. C. Nagle, Carbon 41, 15 (2003).

    Article  Google Scholar 

  15. F. Carmona, P. Delhaes, G. Keryer, and J. P. Manceau, Solid State Commun. 14, 1183 (1974).

    Article  ADS  Google Scholar 

  16. E. E. Loebner, Phys. Rev. 102, 46 (1956).

    Article  ADS  Google Scholar 

  17. L. S. Parfen’eva, B. I. Smirnov, I. A. Smirnov, D. Wlosewicz, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, F. M. Varela-Feria, and A. I. Krivchikov, Phys. Solid State 48(11), 2056 (2006).

    Article  ADS  Google Scholar 

  18. I. A. Smirnov, T. S. Orlova, B. I. Smirnov, D. Wlosewicz, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 51(11), 2264 (2009).

    Article  ADS  Google Scholar 

  19. L. S. Parfen’eva, B. I. Smirnov, I. A. Smirnov, D. Wlosewicz, H. Misiorek, Cz. Sulkowski, A. Jezowski, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 51(11), 2252 (2009).

    Article  ADS  Google Scholar 

  20. L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, D. Wlosewicz, and A. Jezowski, Phys. Solid State 53(8), 1747 (2011).

    Article  Google Scholar 

  21. F. M. Varela-Feria, PhD Thesis (Universidad de Sevilla, Seville, Spain, 2004).

  22. A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).

    Article  ADS  Google Scholar 

  23. A. K. Kercher and D. C. Nagle, Carbon 40, 3121 (2002).

    Article  Google Scholar 

  24. B. E. Warren, Phys. Rev. 59, 693 (1941).

    Article  MATH  ADS  Google Scholar 

  25. A. I. Kitaigorodskii, X-Ray Structural Analysis of Finely-Crystalline and Amorphous Solids (GITTL, Moscow, 1952) [in Russian].

    Google Scholar 

  26. A. Guinier, Théorie et Technique de la Radiocristallographie (Dunod, Paris, 1956; GIFML, Moscow, 1961) [in French and in Russian].

    Google Scholar 

  27. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P. C. Eklund, Nano Lett. 6, 2667 (2006).

    Article  ADS  Google Scholar 

  28. E. A. Bel’skaya and A. S. Tarabanov, in Thermophysical Properties of Solids (Naukova Dumka, Kiev, 1970), p. 111 [in Russian].

    Google Scholar 

  29. A. L. Love, J. Appl. Phys. 22, 252 (1951).

    ADS  Google Scholar 

  30. E. Ya. Litovskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 559 (1980).

    Google Scholar 

  31. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Smirnov.

Additional information

Original Russian Text © L.S. Parfen’eva, T.S. Orlova, N.F. Kartenko, B.I. Smirnov, I.A. Smirnov, H. Misiorek, A. Jezowski, J. Muha, M.C. Vera, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 11, pp. 2278–2286.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parfen’eva, L.S., Orlova, T.S., Kartenko, N.F. et al. Structure, electrical resistivity, and thermal conductivity of beech wood biocarbon produced at carbonization temperatures below 1000°C. Phys. Solid State 53, 2398–2407 (2011). https://doi.org/10.1134/S1063783411110230

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411110230

Keywords

Navigation