Skip to main content
Log in

Energy spectrum of C60 fullerene

  • Fullerenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The energy spectrum of the C60 fullerene has been calculated in terms of the Shubin-Vonsovskii-Hubbard model using an approximation of static fluctuations. Based on the spectrum, the optical absorption bands at 4.84, 5.88, and 6.30 eV observed experimentally have been successfully explained. It has been concluded that the model used is applicable for the calculation of the energy spectrum and the energy properties of other nanosystems, such as fullerenes of higher orders, carbon nanotubes, and grafen planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Haddon, L. E. Brus, and K. Raghavschari, Chem. Phys. Lett. 131, 165 (1986).

    Article  ADS  Google Scholar 

  2. R. C. Haddon, Acc. Chem. Res. 25, 1237 (1992).

    Article  Google Scholar 

  3. D. A. Bovchar and E. G. Gal’pern, Dokl. Akad. Nauk SSSR 209, 610 (1973).

    Google Scholar 

  4. E. Manousakis, Phys. Rev. B: Condens. Matter 44, 10991 (1991).

    Article  ADS  Google Scholar 

  5. W. Andreoni, Annu. Rev. Phys. Chem. 49, 405 (1998).

    Article  ADS  Google Scholar 

  6. A. Tamai. A. P. Seitsonen, F. Baumberger, M. Hengsberger, Z.-X. Shen, T. Greber, and J. Osterwalder, Phys. Rev. B: Condens. Matter 77, 075134 (2008).

    Article  ADS  Google Scholar 

  7. A. V. Nikolaev and B. N. Plakhutin, Usp. Khim. 79, 803 (2010).

    Google Scholar 

  8. E. G. Rakov, Nanotubes and Fullerenes (Fizmatkniga, Moscow, 2006) [in Russian].

    Google Scholar 

  9. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).

    Article  ADS  Google Scholar 

  10. S. P. Shubin and S. V. Wonsowskii, Proc. R. Soc. London, Ser. A 145, 159 (1934).

    Article  ADS  Google Scholar 

  11. I. A. Misurkin and A. A. Ovchinnikov, JETP Lett. 4(7), 167 (1966).

    ADS  Google Scholar 

  12. A. Onipko, Phys. Rev. B: Condens. Matter 74, 245412 (2008).

    Article  ADS  Google Scholar 

  13. G. I. Mironov, Phys. Solid State 49(3), 552 (2007).

    Article  ADS  Google Scholar 

  14. E. D. Izergin and G. I. Mironov, Low Temp. Phys. 33(12), 1038 (2007).

    Article  ADS  Google Scholar 

  15. A. I. Murzashev, JETP 108(1), 111 (2009).

    Article  ADS  Google Scholar 

  16. V. V. Loskutov, G. I. Mironov, and R. R. Nigmatulin, Low Temp. Phys. 22(3), 220 (1996).

    ADS  Google Scholar 

  17. S. Leach, M. Vervloet, A. Desprès, E. Bréheret, J. P. Hare, T. J. Dennis, H. W. Kroto, R. Taylor, and D. R. M. Walton, Chem. Phys. 160, 451 (1992).

    Article  Google Scholar 

  18. A. V. Nikolaev, I. V. Bodrenko, and E. V. Tkalya, Phys. Rev. A: At., Mol., Opt. Phys. 77, 015503 (2008).

    Article  Google Scholar 

  19. A. Hiraya and K. Shobatake, J. Chem. Phys. 94, 7700 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Mironov.

Additional information

Original Russian Text © G.I. Mironov, A.I. Murzashev, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 11, pp. 2273–2277.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, G.I., Murzashev, A.I. Energy spectrum of C60 fullerene. Phys. Solid State 53, 2393–2397 (2011). https://doi.org/10.1134/S1063783411110199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411110199

Keywords

Navigation