Skip to main content
Log in

Molecular dynamics simulation of the formation of metal nanocontacts

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The process of the formation of nanocontacts has been studied by the molecular dynamics methods for a group of metals (Cu, Rh, Pd, Ag, Pt, Au). It has been shown that the disruption forces of nanocontacts substantially depend on the orientation ((100), (110), or (111)) of the contact-surface interface. The possibility of forming linear atomic chains as a result of the disruption of nanocontacts has been analyzed for different orientations of the electrode surfaces. The possibility of forming quasi-one-dimensional nanostructures from the Co/Au alloy, which represent a periodic alternation of gold atoms and cobalt trimers, has been predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hideaki Ohnishi, Yukihito Kondo, and Kunio Takayanagi, Nature (London) 395, 780 (1998).

    Article  ADS  Google Scholar 

  2. J. M. Krans, J. M. van Ruitenbeek, V. V. Fisun, I. K. Yanson, and L. J. de Jongh, Nature (London) 375, 767 (1995).

    Article  ADS  Google Scholar 

  3. P. Z. Coura, S. B. Legoas, A. S. Moreira, F. Sato, V. Rodrigues, S. O. Dantas, D. Ugarte, and D. S. Galvão, Nano Lett. 4, 1187 (2004).

    Article  ADS  Google Scholar 

  4. B. H. M. Smit, C. Untiedt, A. I. Yanson, and J. M. van Ruitenbeek, Phys. Rev. Lett. 87, 266102 (2001).

    Article  ADS  Google Scholar 

  5. W. H. A. Thijssen, D. Marjenburgh, R. H. Bremmer, and J. M. van Ruitenbeek, Phys. Rev. Lett. 96, 026806 (2006).

    Article  ADS  Google Scholar 

  6. K. M. Tsysar’, D. I. Bazhanov, A. M. Saletsky, V. S. Stepanyuk, and W. Hergert, Phys. Solid State 52(3), 641 (2010).

    Article  ADS  Google Scholar 

  7. J. Bettini, F. Sato, P. Z. Coura, S. O. Dantas, D. S. Galvão, and D. Ugarte, Nat. Nanotechnol. 1, 182 (2006).

    Article  ADS  Google Scholar 

  8. Akihiro Enomoto, Shu Kurokawa, and Akira Sakai, Phys. Rev. B: Condens. Matter 65, 125410 (2002).

    Article  ADS  Google Scholar 

  9. V. S. Stepanyuk, A. L. Klavsyuk, W. Hergert, A. M. Saletsky, P. Bruno. and I. Mertig, Phys. Rev. B: Condens. Matter 70, 195420 (2004).

    Article  ADS  Google Scholar 

  10. F. Cleri and V. Rosato, Phys. Rev. B: Condens. Matter 48, 22 (1933).

    Article  ADS  Google Scholar 

  11. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    MATH  Google Scholar 

  12. D. W. Heermann, Computer Simulation Methods in Theoretical Physics (Springer, Berlin, 1990).

    Book  MATH  Google Scholar 

  13. H. L. Meyerheim, V. S. Stepanyuk, A. L. Klavsyuk, E. Soyka, and J. Kirschner, Phys. Rev. B: Condens. Matter 72, 113403 (2005).

    Article  ADS  Google Scholar 

  14. V. S. Stepanyuk, A. L. Klavsyuk, L. Niebergall, A. M. Saletsky, W. Hergert, and P. Bruno, Phase Transform. 78, 61 (2005).

    Article  Google Scholar 

  15. S. V. Kolesnikov, A. L. Klavsyuk, and A. M. Saletsky, JETP Lett. 89(9), 471 (2009).

    Article  ADS  Google Scholar 

  16. A. L. Klavsyuk, S. V. Kolesnikov, E. M. Smelova, and A. M. Saletsky, JETP Lett. 91(3), 158 (2010).

    Article  ADS  Google Scholar 

  17. F. Sato, A. S. Moreira, J. Bettini, P. Z. Coura, S. O. Dantas, D. Ugarte, and D. S. Galvão, Phys. Rev. B: Condens. Matter 74, 193401 (2006).

    Article  ADS  Google Scholar 

  18. O. Gülseren, F. Ercolessi, and E. Tosatti, Phys. Rev. Lett. 80, 3775 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Klavsyuk.

Additional information

Original Russian Text © A.L. Klavsyuk, S.V. Kolesnikov, E.M. Smelova, A.M. Saletsky, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 11, pp. 2237–2241.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klavsyuk, A.L., Kolesnikov, S.V., Smelova, E.M. et al. Molecular dynamics simulation of the formation of metal nanocontacts. Phys. Solid State 53, 2356–2360 (2011). https://doi.org/10.1134/S106378341111014X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341111014X

Keywords

Navigation