Skip to main content
Log in

Possible experimental separation of the mechanisms of phase transitions under pressure

  • Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Two phenomenological models of phase transitions occurring under isotropic pressure have been considered. The models are based on different assumptions regarding the transition mechanism: the Mott model (in which the nonequilibrium Helmholtz thermodynamic potential is a smooth continuous function of the unit cell volume and is characterized by two inflection points) and the Fermi model (according to which the ground state of the atoms of the material changes with an increase in pressure due to the change in the relative positions of two lower energy levels, and, therefore, the thermodynamic potential of the unit cell is a piecewise continuous function of the unit cell volume). A detailed analysis has been made of the consequences of both models, and the criteria for application of these models to the description of phase transitions in specific materials have been obtained. The applicability of the derived criteria and the chosen model has demonstrated using the example of the phase transition observed in selenium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at High Pressures and Temperatures (Nauka, Moscow, 1968; Consultants Bureau, New York, 1971).

    Google Scholar 

  2. E. Yu. Tonkov, Phase Transformations of Elements under High Pressure (Nauka, Moscow, 1979; CRC Press, Boca Raton, Florida, United States, 2005).

    Google Scholar 

  3. E. Yu. Tonkov, Phase Transformations of Compounds under High Pressure (Nauka, Moscow, 1983; Gordon and Breach, London, 1991).

    Google Scholar 

  4. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974).

    Google Scholar 

  5. L. Bellaiche, K. Kunc, and J. M. Besson, Phys. Rev. B: Condens. Matter 54, 8945 (1996).

    Article  ADS  Google Scholar 

  6. N. E. Cristensen and I. Gorczyca, Phys. Rev. B: Condens. Matter 50, 4397 (1994).

    Article  ADS  Google Scholar 

  7. A. F. Wright and J. S. Nelson, Phys. Rev. B: Condens. Matter 51, 7866 (1995).

    Article  ADS  Google Scholar 

  8. M. Ueno, M. Yoshida, and A. Onodera, Phys. Rev. B: Condens. Matter 49, 14 (1994).

    Article  ADS  Google Scholar 

  9. J. G. Zhao, L. X. Yang, Y. Yu, S. J. You, R. C. Yu, L. C. Chen, F. Y. Li, C. Q. Jin, X. D. Li, Y. C. Li, and J. Lin, Chin. Phys. Lett. 22, 1199 (2005).

    Article  ADS  Google Scholar 

  10. I. S. Lyubutin, S. G. Ovchinnikov, A. G. Gavriluk, and V. V. Struzhkin, Phys. Rev. B: Condens. Matter 79, 085125 (2009).

    Article  ADS  Google Scholar 

  11. S. G. Ovchinnikov, JETP Lett. 77(12), 676 (2003).

    Article  ADS  Google Scholar 

  12. J. Kunes, A. V. Lukyanov, V. Anisimov, R. T. Scalletar, and W. E. Picket, Nat. Mater. 7, 198 (2008); www.nature.com/naturematerials.

    Article  ADS  Google Scholar 

  13. J. F. Lin, H. Watson, G. Vanko, E. Esen Apl, V. B. Pra- kapenka, P. Dera, V. V. Struzhkin, A. Kubo, J. Zhao, C. McCammon, and W. J. Evans, Published online: 14 September 2008; DOI: 10/1038.ngeo310 nature geosciense|ADVANCE PUBLICATION|www.nature.com/naturegeosciences.

  14. G. R. Hearne, M. P. Pasternak, R. D. Taylor, and P. Lacorre, Phys. Rev. B: Condens. Matter 51, 11495 (1995).

    Article  ADS  Google Scholar 

  15. A. G. Gavriluk, S. A. Kharlamova, I. S. Lubutin, S. G. Ovchinnikov, and L. A. Troyan, in Proceedings of the 8th International Meeting “Order, Disorder and Properties of Oxides” (ODPO-8), Sochi, Russia, September 19–22, 2005 (Sochi, 2005), pp. 231, 232.

  16. R. M. Wentzcovitch, J. F. Justo, Z. Wu, C. R. S. da Sil- va, D. A. Yen, and D. Kohlstedt, Proc. Natl. Acad. Sci. USA 106, 8447 (2009).

    ADS  Google Scholar 

  17. W. Chung and J. K. Freericks, Phys. Rev. Lett. 84(11), 2461 (2000); Masaki Ueno, Minoru Yoshida, Akifumi Onodera, Osamu Shimomura, and Kenichi Takemura, Phys. Rev. B 49 (1), 14 (1994).

    Article  ADS  Google Scholar 

  18. A. L. Korzhenevskii and A. A. Luzhkov, Sov. Phys. Solid State 33(7), 1187 (1991).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984), pp. 126–128.

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Butterworth-Heinemann, Oxford, 2000; Nauka, Moscow, 2005).

    Google Scholar 

  21. Yu. M. Gufan, V. P. Dmitriev, and P. Toledano, Sov. Phys. Solid State 30(4), 613 (1988).

    Google Scholar 

  22. Yu. M. Gufan, I. N. Moshchenko, and V. I. Snezhkov, Phys. Solid State 35(8), 1037 (1993).

    ADS  Google Scholar 

  23. V. P. Dmitriev, S. B. Roshal, Yu. M. Gufan, and P. Toledano, Phys. Rev. Lett. 60, 1958 (1988); V. P. Dmitriev, S. B. Roshal, Yu. M. Gufan, and P. Toledano, Phys. Rev. Lett. 62, 844 (1989); V. P. Dmitriev, S. B. Roshal, Yu. M. Gufan, and P. Toledano, Phys. Rev. Lett. 62, 2495 (1989).

    Article  ADS  Google Scholar 

  24. V. Ya. Anosov, M. I. Ozerova, and Yu. Ya. Fialkov, Fundamentals of Physical-Chemical Analysis (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  25. A. Yu. Gufan, Phys. Solid State 48(3), 557 (2006); A. Yu. Gufan, Yu. M. Gufan, Z. Jiao, and X.-F. Xu, Phys. Solid State 48 (2), 348 (2006).

    Article  ADS  Google Scholar 

  26. P. W. Anderson and S. T. Chu, Phys. Rev. B: Solid State 9, 3229 (1974).

    Article  ADS  Google Scholar 

  27. Yu. M. Gufan, Structure Phase Transitions (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  28. A. Yu. Gufan, M. I. Novgorodova, and Yu. M. Gufan, Bull. Russ. Acad. Sci.: Phys. 73(8), 1085 (2009).

    Article  Google Scholar 

  29. J. Prchal, F. R. de Boer, and A. C. Moleman, and P. Javorsky, in Proceedings of the Conference “Isostructural Transition in RTAl Compounds at High Temperature,” Kosice, Slovakia, 2007 (Acta Phys. Pol., A 113, 335 (2008).

    Google Scholar 

  30. A. G. Gavrilyuk, V. V. Struzhkin, I. S. Lyubutin, and I. A. Troyan, JETP Lett. 86(3), 197 (2007).

    Article  ADS  Google Scholar 

  31. Y. Akahama, H. Kawamura, and A. K. Singh, J. Appl. Phys. 92, 5892 (2002).

    Article  ADS  Google Scholar 

  32. A. Dewaele, P. Loubeyre, F. Occelli, M. Mezouar, P. I. Dorogokupets, and M. Torrent, Phys. Rev. Lett. 97, 215504 (2006).

    Article  ADS  Google Scholar 

  33. O. Schulte and W. B. Holzapfel, Phys. Rev. B: Condens. Matter 52, 12636 (1995).

    Article  ADS  Google Scholar 

  34. G. Parthasarathy and W. B. Holzapfel, Phys. Rev. B: Condens. Matter 38, 10105 (1988).

    Article  ADS  Google Scholar 

  35. T. Kruger and W. B. Holzapfel, Phys. Rev. Lett. 69, 305 (1992).

    Article  ADS  Google Scholar 

  36. G. Parthasarathy and W. B. Holzapfel, Phys. Rev. B: Condens. Matter 37, 8499 (1988).

    Article  ADS  Google Scholar 

  37. Y. Akahama, H. Kawamura, S. Carlson, T. Le Bihan, and D. Hausermann, Phys. Rev. B: Condens. Matter 61, 3139 (2001).

    Article  ADS  Google Scholar 

  38. G. N. Chesnut and Y. K. Vohra, Phys. Rev. B: Condens. Matter 62, 2965 (2000).

    Article  ADS  Google Scholar 

  39. Y. Ding, R. Ahuja, J. Shu, P. Chow, W. Luo, and Hokwang Mao, Phys. Rev. Lett. 98, 085502 (2007).

    Article  ADS  Google Scholar 

  40. H. Cynn, C. S. Yoo, B. Baer, A. K. Iota-Herbei, A. McMahan, M. Nicol, and S. Carlson, Phys. Rev. Lett. 86, 4552 (2001).

    Article  ADS  Google Scholar 

  41. C. S. Yoo, B. Maddox, J. H. P. Kiepeis, V. Iota, W. Evans, A. McMahan, M. Y. Hu, P. Chow, M. Someyzulu, D. Housermann, R. T. Sealetar, and W. E. Pickett, Phys. Rev. Lett. 94, 115562 (2005).

    Article  Google Scholar 

  42. J. S. Olsen and L. Gerward, Mater. Sci. Forum 133–136, 603 (1993).

    Article  Google Scholar 

  43. N. L. Ross, J. Ko, and Ch. T. Prewit, J. Phys. Chem. Miner. 16, 621 (1989).

    ADS  Google Scholar 

  44. M. L. Winterosse, M. S. Lucas, A. F. Yue, I. Halevy, L. Manger, J. A. Munoz, J. Hu, M. Lerche, and B. Fultz, Phys. Rev. Lett. 102, 237202 (2009).

    Article  ADS  Google Scholar 

  45. L. Nataf, F. Decremps, M. Gauthier, and B. Canny, Phys. Rev. B: Condens. Matter 74, 184422 (2006).

    Article  ADS  Google Scholar 

  46. A. G. Gavrilyuk, I. A. Troyan, R. Beller, M. I. Eremets, I. S. Lyubutin, and N. R. Serebryanaya, JETP Lett. 77 (11), 619 (2003).

    Google Scholar 

  47. A. G. Gavriliuk, I. A. Trojan, R. Boehler, M. Eremetz, A. Zerr, I. S. Lyubutin, and V. A. Sarkisyan, JETP Lett. 75(1), 23 (2002).

    Article  ADS  Google Scholar 

  48. W. M. Xu, O. Naaman, G. Kh. Rozenberg, P. Pasternak, and R. D. Taylor, Phys. Rev. B: Condens. Matter 64, 094411 (2001).

    Article  ADS  Google Scholar 

  49. M. P. Pasternak, G. Kh. Rozenberg, G. Yu. Machavariani, O. Naaman, R. D. Taylor, R. Jeanloz, Phys. Rev. Lett. 82, 4663 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Gufan.

Additional information

Original Russian Text © A.Yu. Gufan, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 11, pp. 2226–2236.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gufan, A.Y. Possible experimental separation of the mechanisms of phase transitions under pressure. Phys. Solid State 53, 2343–2355 (2011). https://doi.org/10.1134/S1063783411110138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411110138

Keywords

Navigation