Skip to main content
Log in

Molecular dynamics simulation of silver bromide nanostructures in single-walled carbon nanotubes

  • Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Nanostructures formed upon filling single-walled carbon nanotubes of different diameters (ranging from 11.5 to 17.6 Å) with silver bromide have been investigated using the molecular dynamics method. The results of molecular dynamics computer simulation have demonstrated that, in such tubes, AgBr nanotubes in the form of rolled-up two-dimensional crystalline networks (including structures both with a trigonal coordination and with a tetragonal coordination of ions) can be produced as well as fragments of the NaCltype structure, which is typical of bulk AgBr crystals. In the initial stage of their filling, the carbon nanotubes in the silver bromide melt are deformed, on average, to a greater extent than those in a similar system with AgI. After taking out from the melt, the degree of deformation of the nanotubes decreases and, in the majority of cases, AgBr nanotubular structures based on a hexagonal network are formed inside them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Chemistry of Nanomaterials: Synthesis, Properties, and Applications, Ed. by C. N. R. Rao, A. Müller, and A. K. Cheetham (Wiley, Weinheim, 2004).

    Google Scholar 

  2. R. Tenne, M. Remškar, A. Enyashin, and G. Seifert, in Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications, Ed. by A. Jorio, G. Dresselhaus, and M. S. Dresselhaus (Springer, Berlin, 2008), p. 631.

    Google Scholar 

  3. A. A. Eliseev, M. V. Kharlamova, M. V. Chernysheva, A. V. Lukashin, Yu. D. Tret’yakov, A. S. Kumskov, and N. A. Kiselev, Usp. Khim. 78, 901 (2009).

    Google Scholar 

  4. H. Chu, L. Wei, R. Cui, J. Wang, and Y. Li, Coord. Chem. Rev. 254, 1117 (2010).

    Article  Google Scholar 

  5. J. Sloan, A. I. Kirkland, J. L. Hutchison, and M. L. H. Green, Chem. Commun. 13, 1319 (2002).

    Article  Google Scholar 

  6. A. Nakano, M. E. Bachlechner, R. K. Kalia, F. Lidorikis, P. Vashishta, G. Z. Voyiadjis, T. J. Campbell, S. Ogata, and F. Shimojo, Comput. Sci. Eng. 3, 56 (2001).

    Article  Google Scholar 

  7. M. Wilson, Nano Lett. 4, 299 (2004).

    Article  ADS  Google Scholar 

  8. M. Wilson and S. Friedrichs, Acta Crystallogr., Sect. A: Found. Crystallogr. 62, 287 (2006).

    Article  ADS  Google Scholar 

  9. M. Wilson, Faraday Discuss. 134, 283 (2007).

    Article  ADS  Google Scholar 

  10. C. L. Bishop and M. Wilson, J. Phys.: Condens. Matter. 21, 115301 (2009).

    Article  ADS  Google Scholar 

  11. A. N. Enyashin, R. Kreizman, and G. Seifert, J. Phys. Chem. C 113, 13664 (2009).

    Article  Google Scholar 

  12. J. Sloan, D. M. Wright, Hee-Gweon Woo, S. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L. Hutchison, and M. L. H. Green, Chem. Commun. 8, 699 (1999).

    Article  Google Scholar 

  13. J. Sloan, M. Terrones, S. Nufer, S. Friedrichs, S. R. Bailey, Hee-Gweon Woo, M. Rühle, J. L. Hutchison, and M. L. H. Green, J. Am. Chem. Soc. 124, 2116 (2002).

    Article  Google Scholar 

  14. A. A. Eliseev, L. V. Yashina, M. M. Brzhezinskaya, M. V. Chernysheva, M. V. Kharlamova, N. I. Verbitsky, A. V. Lukashin, N. A. Kiselev, A. S. Kumskov, R. M. Zakalyukin, J. L. Hutchison, B. Freitag, and A. S. Vinogradov, Carbon 48(8), 2708 (2010).

    Article  Google Scholar 

  15. M. Baldoni, S. Leoni, A. Sgamellotti, G. Seifert, and F. Mercuri, Small 3, 1730 (2007).

    Article  Google Scholar 

  16. I. Yu. Gotlib, A. K. Ivanov-Shitz, I. V. Murin, A. V. Petrov, and R. M. Zakalyukin, Inorg. Mater. 46(12), 1375 (2010).

    Article  Google Scholar 

  17. I. Yu. Gotlib, A. K. Ivanov-Schitz, I. V. Murin, A. V. Petrov, and R. M. Zakalyukin, Solid State Ionics (2010) (in press).

  18. A. Wootton and P. Harrowell, J. Phys. Chem. B 108, 8412 (2004).

    Article  Google Scholar 

  19. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).

    Article  ADS  Google Scholar 

  20. R. N. Schock and J. C. Jamieson, J. Phys. Chem. Solids 30, 1527 (1969).

    Article  ADS  Google Scholar 

  21. K. Shahi and J. B. Wagner, Jr., J. Phys. Chem. Solids 43, 1713 (1982).

    Article  Google Scholar 

  22. P. W. Jacobs, J. Corish, and B. A. Devlin, Photogr. Sci. Eng. 26, 50 (1982).

    Google Scholar 

  23. D. C. Gupta and R. K. Singh, Phys. Rev. B: Condens. Matter 43, 11185 (1991).

    Article  ADS  Google Scholar 

  24. Ç. Tasseven, J. Trullás, O. Alcaraz, M. Silbert, and A. Giro, J. Chem. Phys. 106, 7286 (1997).

    Article  ADS  Google Scholar 

  25. A. K. Ivanov-Schitz, G. N. Mazo, E. S. Povolotskaya, and S. N. Savvin, Solid State Ionics 173, 103 (2004).

    Article  Google Scholar 

  26. S. Matsunaga, Solid State Ionics 176, 1929 (2005).

    Article  Google Scholar 

  27. S. Matsunaga, J. Non-Cryst. Solids 353, 3459 (2007).

    Article  ADS  Google Scholar 

  28. S. Matsunaga, Prog. Theor. Phys. Suppl. 178, 113 (2009).

    Article  MATH  ADS  Google Scholar 

  29. S. Matsunaga, J. Phys.: Conf. Ser. 144, 012011 (2009).

    Article  ADS  Google Scholar 

  30. M. Parrinello, A. Rahman, and P. Vashishta, Phys. Rev. Lett. 50, 1073 (1983).

    Article  ADS  Google Scholar 

  31. F. Shimojo and M. Kobayashi, J. Phys. Soc. Jpn. 60, 3725 (1991).

    Article  ADS  Google Scholar 

  32. C. Yang, X. Zhu, X. Lu, and X. Feng, J. Mol. Struct. (THEOCHEM) 896, 6 (2009).

    Article  Google Scholar 

  33. J. Tersoff, Phys. Rev. B: Condens. Matter 39, 5566 (1989).

    Article  ADS  Google Scholar 

  34. W. Smith, The DL-POLY: Molecular Simulation Package; http://www.cse.clrc.ac.uk/msi/software/DL-POLY/.

  35. S. N. Vaidya and G. C. Kennedy, J. Phys. Chem. Solids 32, 951 (1971).

    Article  ADS  Google Scholar 

  36. J. J. Cha, M. Weyland, J.-F. Briere, I. P. Daykov, T. A. Arias, and D. A. Muller, Nano Lett. 7, 3770 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Gotlib.

Additional information

Original Russian Text © I.Yu. Gotlib, A.K. Ivanov-Schitz, I.V. Murin, A.V. Petrov, R.M. Zakalyukin, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 11, pp. 2256–2264.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotlib, I.Y., Ivanov-Schitz, A.K., Murin, I.V. et al. Molecular dynamics simulation of silver bromide nanostructures in single-walled carbon nanotubes. Phys. Solid State 53, 2375–2384 (2011). https://doi.org/10.1134/S1063783411110126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411110126

Keywords

Navigation