Skip to main content
Log in

Effect of the phonon and magnetic anharmonicity on the thermal and elastic properties of nearly magnetic δ-plutonium

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependences of the total heat capacity and the lattice components of the bulk modulus, the volume thermal expansion coefficient, and the mean-square deviation of atoms from the equilibrium positions of nearly magnetic δ-plutonium (using the Pu0.96Ga0.04 alloy as an example) have been calculated within the framework of the self-consistent thermodynamic model. The electronic heat capacity has been calculated using the results obtained in terms of the self-consistent spin-fluctuation theory based on the inclusion of the strong magnetic anharmonicity, which leads to a splitting of the electronic spectra by fluctuating exchange fields. On this basis, the effect of phonon anharmonicity not only on the lattice heat capacity but also on other thermal and elastic properties has been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. T. Moore and G. van der Laan, Rev. Mod. Phys. 81, 235 (2009).

    Article  ADS  Google Scholar 

  2. A. Solontsov and V. P. Antropov, Phys. Rev. B: Condens. Matter 81(21), 214402 (2010).

    Article  ADS  Google Scholar 

  3. A. C. Lawson, J. A. Roberts, B. Martinez, and G. W. Richardson, Philos. Mag. 86, 2713 (2006).

    Article  ADS  Google Scholar 

  4. S. Meot-Reymond and J. M. Fournier, J. Alloys Compd. 232, 119 (1996).

    Article  Google Scholar 

  5. S. K. McCall, M. J. Fluss, B. W. Chung, M. W. McElfresh, D. D. Jackson, and G. F. Chapline, Proc. Natl. Acad. Sci. USA 103, 17179 (2006).

    Article  ADS  Google Scholar 

  6. S. V. Verkhovskii, V. E. Arkhipov, Yu. N. Zuev, Yu. V. Piskunov, K. N. Mikhalev, A. V. Korolev, I. L. Svyatov, A. V. Pogudin, V. V. Ogloblichev, and A. L. Buzlukov, JETP Lett. 82(3), 139 (2005).

    Article  ADS  Google Scholar 

  7. A. A. Povzner, A. G. Volkov, and A. N. Filanovich, Tech. Phys. Lett. 36(12), 1089 (2010).

    Article  ADS  Google Scholar 

  8. A. Solontsov, Int. J. Mod. Phys. B 19, 3631 (2005).

    Article  ADS  MATH  Google Scholar 

  9. A. N. Filanovich, A. A. Povzner, V. Yu. Bordyakov, Yu. Yu. Tsiovkin, and V. V. Dremov, Tech. Phys. Lett. 35(10), 929 (2009).

    Article  ADS  Google Scholar 

  10. P. Söderlind, A. Landa, J. E. Klepeis, Y. Suzuki, and A. Migliori, Phys. Rev. B: Condens. Matter 81(22), 224110 (2010).

    Article  ADS  Google Scholar 

  11. R. J. McQueeney, A. C. Lawson, A. Migliori, T. M. Kelley, B. Fultz, M. Ramos, B. Martinez, J. C. Lashley, and S. C. Vogel, Phys. Rev. Lett. 92(14), 146401 (2004).

    Article  ADS  Google Scholar 

  12. V. Yu. Bodryakov and A. A. Povzner, Phys. Solid State 45(7), 1254 (2003).

    Article  ADS  Google Scholar 

  13. V. Yu. Bodryakov, A. A. Povzner, and I. V. Safonov, Tech. Phys. 51(2), 216 (2006).

    Article  Google Scholar 

  14. A. A. Povzner, A. N. Filanovich, and E. S. Koneva, High Temp. 48(3), 358 (2010).

    Article  Google Scholar 

  15. A. A. Povzner, A. G. Volkov, and A. N. Filanovich, Phys. Solid State 52(10), 2012 (2010).

    Article  ADS  Google Scholar 

  16. M. J. Graf, T. Lookman, J. M. Wills, D. C. Wallace, and J. C. Lashley, Phys. Rev. B: Condens. Matter 72, 045135 (2005).

    Article  ADS  Google Scholar 

  17. K. A. Shumikhina, A. G. Volkov, and A. A. Povzner, Phys. Solid State 45(6), 1042 (2003).

    Article  ADS  Google Scholar 

  18. I. U. Dzyaloshinskii and P. S. Kondratenko, Sov. Phys. JETP 43(5), 1036 (1976).

    ADS  Google Scholar 

  19. J. Wong, M. Krisch, D. L. Farber, F. Occelli, A. J. Schwartz, T.-C. Chiang, M. Wall, C. Boro, and R. Xu, Science (Washington) 301, 1078 (2003).

    Article  ADS  Google Scholar 

  20. I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elasticity Moduli of Metals and Nonmetals (Naukova Dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  21. V. Yu. Bodryakov, Doctoral Dissertation (Ural State Technical University-Ural Polytechnic University, Yekaterinburg, 2005).

  22. R. W. James, Optical Principles of the Diffraction of X-Rays (G. Bell, London, 1962).

    Google Scholar 

  23. M. Boivineau, J. Nucl. Mater. 392, 568 (2009).

    Article  ADS  Google Scholar 

  24. J. C. Lashley, J. Singleton, A. Migliori, J. B. Betts, R. A. Fisher, J. L. Smith, and R. J. McQueeney, Phys. Rev. Lett. 91, 205901 (2003).

    Article  ADS  Google Scholar 

  25. H. Ledbetter, A. Migliori, J. Betts, S. Harrington, and S. El-Khatib, Phys. Rev. B: Condens. Matter 71, 172101 (2005).

    Article  ADS  Google Scholar 

  26. M. I. Baskes, A. C. Lawson, and S. M. Valone, Phys. Rev. B: Condens. Matter 72, 014129 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Povzner.

Additional information

Original Russian Text © A.A. Povzner, A.G. Volkov, A.N. Filanovich, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 9, pp. 1672–1678.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povzner, A.A., Volkov, A.G. & Filanovich, A.N. Effect of the phonon and magnetic anharmonicity on the thermal and elastic properties of nearly magnetic δ-plutonium. Phys. Solid State 53, 1761–1768 (2011). https://doi.org/10.1134/S1063783411090253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411090253

Keywords

Navigation