Physics of the Solid State

, 53:1957 | Cite as

Empirical modeling of longitudinal tension and compression of graphene nanoparticles and nanoribbons

Graphenes

Abstract

Longitudinal tension and compression of graphene nanoparticles and nanoribbons have been studied using an empirical model. The pseudo-Young’s modulus of graphene nanoparticles and nanoribbons has been calculated. The size effect, i.e., the dependence of the elastic modulus on linear parameters of graphene objects, has been studied. An increase in pseudo-Young’s modulus discontinues as the length increases during the nanoparticle-to-nanoribbon transition. For the same perimeter, the graphene ribbon edges are characterized by smaller pseudo-Young’s moduli in comparison with uniaxial carbon nanotubes. Elastic deformation of graphene nanoparticles and nanoribbons has been observed in the relative length variation range of 0.93–1.12.

References

  1. 1.
    K. N. Kudin, G. E. Scuseria, and B. I. Yakobson, Phys. Rev. B: Condens. Matter 64, 235406 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    G. V. Lier, C. V. Alsenoy, V. V. Doren, and S. P. Greelings, Phys. Lett. 326, 181 (2000).Google Scholar
  3. 3.
    R. Faccio, P. A. Denis, H. Pardo, C. Goyenola, and A. W. Mombru, J. Phys.: Condens. Matter 21, 285304 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Yu. Davydov, Phys. Solid State 52(4), 810 (2010).CrossRefGoogle Scholar
  5. 5.
    C. Yu. Davydov, Phys. Solid State 52(9), 1947 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    M. Neek-Amal and F. M. Peeters, Phys. Rev. B: Condens. Matter 81, 235421 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    M. Neek-Amal and F. M. Peeters, Phys. Rev. B: Condens. Matter 81, 235437 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    F. Scarpa, S. Adhikari, and A. S. Phani, Nanotechnology 20, 065709 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    H. Zhao, K. Min, and N. R. Aluru, Nano Lett. 9, 3012 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    Yu. G. Yanovskii, E. A. Nikitina, Yu. N. Karnet, and S. M. Nikitin, Fiz. Mezomekh. 12, 61 (2009).Google Scholar
  11. 11.
    M. Topsakal and S. Ciraci, Phys. Rev. B: Condens. Matter 81, 024107 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    G. Tsoukleri, J. Parthenios, K. Papagelis, R. Jalil, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, Small 5, 2397 (2009).CrossRefGoogle Scholar
  13. 13.
    C. Lee, X. Wei, J. W. Kysar, and J. None, Science (Washington) 321, 385 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    D. W. Brenner, Phys. Rev. B: Condens. Matter 42, 9458 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    Z. Mao, A. Garg, and S. B. Sinnott, Nanotechnology 10, 273 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    S. H. Yeak and T. Y. Ng, Phys. Rev. B: Condens. Matter 72, 165 401 (2005).CrossRefGoogle Scholar
  18. 18.
    Yang Wang, D. Tomanek, and G. F. Bertsh, Phys. Rev. B: Condens. Matter 44, 6562 (1991).ADSCrossRefGoogle Scholar
  19. 19.
    R. S. Ruoff, D. Qian, and W. K. Liu, C. R. Phys. 4, 993 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    O. E. Glukhova and O. A. Terent’ev, Phys. Solid State 48(7), 1441 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Chernyshevsky Saratov State UniversitySaratovRussia

Personalised recommendations