Skip to main content
Log in

Study of the formation kinetics of Metastable phases in quenched Al-Mg-Si Alloys

  • Lattice Dynamics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of the experimental study of the formation kinetics of metastable phases during decomposition of supersaturated solid solutions of quenched Al-Mg-Si alloys are presented. The process has been studied by measuring the electrical conductivity at low temperatures (18–85°C) and by measuring the Young’s modulus using the acoustic method in the temperature range 120–220°C. The method of measuring the Young’s modulus is characterized by a high precision and has made it possible to distinguish between the successive stages of the decomposition due to the formation of Guinier-Preston zones, particles of the pre-β″/β″ and β′-phases. The effective activation energies have been calculated using the obtained data on the characteristic durations of the stages of the process at different temperatures. It has been shown that the activation energy of the formation and evolution of particles in the β″-phase is considerably lower than the activation energy of diffusion of alloying element atoms at equilibrium conditions, which is caused by the effect of long-lived quenching vacancies. This energy is close to the activation energy of migration of the ν + Mg complex and, according to the obtained results, is equal to 0.58 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Gupta, D. J. Lloyd, and S. A. Court, Mater. Sci. Eng., A 316, 11 (2001).

    Article  Google Scholar 

  2. S. Esmaeili, X. Wang, D. J. Lloyd, and W. J. Poole, Metall. Mater. Trans. A 34, 751 (2003).

    Google Scholar 

  3. M. J. Couper and N. C. Parson, in Aluminium Alloys: Their Physical and Mechanical Properties Ed. by J. Hirsch, B. Skrotzki, and G. Gottstein (Wiley, Weinheim, 2008), Vol. 1, p 98.

    Google Scholar 

  4. H. R. Shercliff and M. F. Ashby, Acta Metall. Mater. 38, 789 (1990).

    Google Scholar 

  5. A. A. Vasilyev, Yu. F. Titovets, and B. Bukhmaer, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 2, 36 (1997).

  6. A. A. Vasilyev, N. L. Kuz’min, and A. S. Gruzdev, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 3, 29 (1997).

  7. O. R. Myhr and Ø Grong, Acta Mater. 48, 1605 (2000).

    Article  Google Scholar 

  8. O. R. Myhr, Ø Grong, and S. Andersen, Acta Master. 49, 165 (2001).

    Article  Google Scholar 

  9. S. Esmaeili, X. Wang, D. J. Lloyd, and W. J. Poole, Acta Mater. 51, 3467 (2003).

    Article  Google Scholar 

  10. S. Esmaeili and D. J. Lloyd, Acta Mater. 53, 5257 (2005).

    Article  Google Scholar 

  11. C. Panseri and T. Federighi, J. Inst. Met. 94, 99 (1966).

    Google Scholar 

  12. T. Federighi and G. Thomas, Philos. Mag. 7, 127 (1962).

    Article  ADS  Google Scholar 

  13. A. Gaber, M. A. Gaffar, M. S. Mostafa, and E. F. Abo Zeid, J. Alloys Compd. 429, 167 (2007).

    Article  Google Scholar 

  14. Y. Du, Y. A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F. Y. Xie, Mater. Sci. Eng., A 363, 140 (2003).

    Article  Google Scholar 

  15. M. B. Berkenpas, J. A. Barnard, R. V. Ramanujan, and H. I. Aaronson, Scr. Metall. 20, 323 (1986).

    Article  Google Scholar 

  16. V. A. Chelnokov, N. L. Kuzmin, A. A. Vasilyev, and Yu. F. Titovets, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 6, 32 (1997).

  17. V. A. Chelnokov, N. L. Kuzmin, A. A. Vasilyev, Yu. F. Titovets, and B. Bukhmaer, Zavod. Lab. Diagn. Mater., No. 3, 18 (1997).

  18. A. A. Vasilyev, N. L. Kuzmin, V. A. Chelnokov, and H.-C. Lee, Met. Sci. Heat Treat. 49(1–2), 32 (2007).

    Article  Google Scholar 

  19. A. A. Vasilyev, C.-H. Lee, and N. L. Kuzmin, Mater. Sci. Eng., A 485, 282 (2008).

    Article  Google Scholar 

  20. C. D. Marioara, S. J. Andersen, J. Jansen, and H. W. Zandbergen, Acta Mater. 51, 789 (2003).

    Article  Google Scholar 

  21. N. L. Kuzmin, A. A. Vasilyev, and V. A. Chelnokov, Proceedings of SPAS International Workshop “Nondestructive Testing and Computer Simulations in Materials Science and Engineering,” (NDTCS-99), St. Petersburg, June 7–11, 1999, p. F20.

  22. C. Wolverton, Acta Mater. 55, 5867 (2007).

    Article  Google Scholar 

  23. H. Kahn and L. A. Girifalco, Acta Metall. 14, 749 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vasilyev.

Additional information

Original Russian Text © A.A. Vasilyev, N.L. Kuzmin, A.S. Gruzdev, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 8, pp. 1576–1581.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilyev, A.A., Kuzmin, N.L. & Gruzdev, A.S. Study of the formation kinetics of Metastable phases in quenched Al-Mg-Si Alloys. Phys. Solid State 53, 1658–1663 (2011). https://doi.org/10.1134/S1063783411080324

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411080324

Keywords

Navigation