Physics of the Solid State

, 53:1614 | Cite as

Homogeneous nucleation of dislocations

Mechanical Properties, Physics of Strength, and Plasticity

Abstract

The mechanism and stochastic properties of the homogeneous nucleation of dislocations have been studied. An approach has been proposed for determining the nucleation rate based on consideration of the lifetimes of a metastable state. Primary data have been obtained using the molecular dynamics method. The dependences of the nucleation rate on the shear stresses have been determined for several temperatures. An approximation of the obtained results in terms of the Arrhenius equation has been proposed. The regions of shear stresses and temperatures in which the mechanism of homogeneous dislocation nucleation can be realized have been estimated.

References

  1. 1.
    J. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).Google Scholar
  2. 2.
    V. I. Al’shits and V. L. Indenbom, Sov. Phys.—Usp. 18(1), 1 (1975).ADSGoogle Scholar
  3. 3.
    T. Suzuki, H. Yosinaga, and S. Takeuti, Dislocation Dynamics and Plasticity (Syokabo, Tokyo, 1986; Mir, Moscow, 1989).Google Scholar
  4. 4.
    H. Bei, Y. F. Gao, S. Shim, E. P. George, and G. M. Pharr, Phys. Rev. B: Condens. Matter 77, 060103 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H. S. Leipner, Phys. Rev. B: Condens. Matter 67, 172101 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. I. Golovin, Phys. Solid State 50(12), 2205 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    C. A. Schuh, J. K. Mason, and A. C. Lund, Nat. Mater. 4, 617 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    P. S. Wo, L. Zuo, and A. H. W. Ngan, J. Mater. Res. 20, 489 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    M. Yu. Gutkin and I. A. Ovid’ko, Appl. Phys. Lett. 88, 211901 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    M. Yu. Gutkin and I. A. Ovid’ko, Phys. Solid State 50(4), 655 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    M. Yu. Gutkin, T. Ishizaki, S. Kuramoto, and I. A. Ovidko, Acta Mater. 54, 2489 (2006).CrossRefGoogle Scholar
  12. 12.
    M. Yu. Gutkin and I. A. Ovidko, Acta Mater. 56, 1642 (2008).CrossRefGoogle Scholar
  13. 13.
    J. Cui, Y. Hao, S. Li, M. Sui, D. Li, and R. Yang, Phys. Rev. Lett. 102, 045503-1 (2009).ADSGoogle Scholar
  14. 14.
    M. Yu. Gutkin, K. N. Mikaelyan, and I. A. Ovid’ko, Phys. Solid State 43(1), 42 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    S. V. Bobylev and I. A. Ovid’ko, Phys. Solid State 50(4), 642 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    D. Tanguy, M. Mareschal, P. S. Lomdahl, T. C. Germann, B. L. Holian, and R. Ravelo, Phys. Rev. B: Condens. Matter 68, 144111 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    B. Cao, E. M. Bringa, and M. A. Meyers, Metall. Mater. Trans. A 38, 2681 (2007).CrossRefGoogle Scholar
  18. 18.
    D. E. Spearot, M. A. Tschopp, and D. L. McDowell, Scr. Mater. 60, 675 (2009).CrossRefGoogle Scholar
  19. 19.
    T. Zhu, J. Li, K.J. Van Vliet, S. Ogata, S. Yip, and S. Suresha, J. Mech. Phys. Solids 52, 691 (2004).ADSCrossRefMATHGoogle Scholar
  20. 20.
    K. J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh, Phys. Rev. B: Condens. Matter 67, 104105 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    S. V. Dmitriev, J. Li, N. Yoshikawa, and Y. Shibutani, Philos. Mag. 85, 2177 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    M. S. Daw and M. I. Baskes, Phys. Rev. B: Condens. Matter 29, 6443 (1984).ADSCrossRefGoogle Scholar
  23. 23.
    X.-Y. Liu, Xu Wei, S. M. Foiles, and J. B. Adams, Appl. Phys. Lett. 72, 1578 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).ADSCrossRefMATHGoogle Scholar
  25. 25.
    M. A. Tschopp, D. E. Spearot, and D. L. McDowell, Modell. Simul. Mater. Sci. Eng. 15, 693 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, Dokl. Phys. 53(6), 287 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    V. S. Krasnikov, A. Yu. Kuksin, A. E. Maier, and A. V. Yanilkin, Phys. Solid State 52(7), 1386 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    S. G. Psakhie, K. P. Zolnikov, and D. S. Kryzhevich, Phys. Lett. A 367, 250 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    G. E. Norman and V. V. Stegailov, Mol. Simul. 30, 397 (2004).CrossRefMATHGoogle Scholar
  30. 30.
    G. E. Norman and V. V. Stegailov, Dokl. Phys. 47(9), 667 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    A. Y. Kuksin, I. V. Morozov, G. E. Norman, V. V. Stegailov, and I. A. Valuev, Mol. Simul. 31, 1005 (2005).CrossRefGoogle Scholar
  32. 32.
    V. P. Skripov and V. P. Koverda, Spontaneous Crystallization of Supercooled Liquids (Nauka, Moscow, 1984) [in Russian].Google Scholar
  33. 33.
    S. L. Dudarev, M. R. Gilbert, K. Arakawa, H. Mori, Z. Yao, M. L. Jenkins, and P. M. Derlet, Phys. Rev. B: Condens. Matter 81, 224107 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Scientific Association for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow RegionRussia

Personalised recommendations