Skip to main content
Log in

Effect of dispersion and damping of thermal phonon states on the longitudinal ultrasonic absorption in germanium crystals

  • Lattice Dynamics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A method has been proposed for approximating a phonon spectrum of cubic crystals, which has been obtained from data on inelastic neutron scattering for symmetric directions, over the entire Brillouin zone in the form appropriate for studying relaxation characteristics of phonon systems. The effect of dispersion and damping of thermal phonon states on the longitudinal ultrasonic absorption in anharmonic processes of scattering with the participation of three longitudinal phonons has been investigated for germanium crystals. It has been shown that the inclusion of the dispersion leads to a decrease in the anisotropy of ultrasonic absorption in the LLL relaxation mechanism and makes it possible to fit the results obtained from calculations of the ultrasonic absorption coefficients to the experimental data in the low-temperature range. The temperature dependence and anisotropy of the relaxation rate of longitudinal thermal phonons in germanium crystals have been determined from experimental data on ultrasonic absorption. The performed analysis has refined values of the relaxation parameters obtained from the interpretation of the data on thermal conductivity of germanium crystals with different isotopic compositions in the isotropic-medium model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. G. Kuleev and I. I. Kuleev, Phys. Solid State 52(7), 1475 (2010).

    Article  ADS  Google Scholar 

  2. J. P. Kalejs and H. J. Maris, J. Appl. Phys. 41, 460 (1970).

    Article  ADS  Google Scholar 

  3. M. Pomerantz, Phys. Rev. A: At., Mol., Opt. Phys. 139, 501 (1965).

    ADS  Google Scholar 

  4. K. R. Keller, J. Appl. Phys. 38, 3777 (1967).

    Article  ADS  Google Scholar 

  5. A. A. Bulgakov, V. V. Tarakanov, and F. N. Chernets, Sov. Phys. Solid State 15(6), 1280 (1973).

    Google Scholar 

  6. S. L. McBride, H. J. Maris, and B. Truel, J Acoust. Soc. Am. 45, 1385 (1969).

    Article  ADS  Google Scholar 

  7. V. V. Lemanov and G. A. Smolenskii, Sov. Phys.-Usp. 15, 708 (1972).

    Article  ADS  Google Scholar 

  8. H. J. Maris, in Physical Acoustics, Ed. by W. P. Mason and R. N. Thurston (Academic, New York, 1971), Vol. 8, p. 279.

    Google Scholar 

  9. B. Truel, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Sold State Physics (Academic, New York, 1969).

    Google Scholar 

  10. J. Tucker and V. Rampton, Microwave Ultrasonics in Solid State Physics (North-Holland, Amsterdam, 1971; Mir, Moscow, 1975).

    Google Scholar 

  11. H. J. Maris, Philos. Mag. 9, 901 (1964).

    Article  ADS  Google Scholar 

  12. W. P. Mason, in Physical Acoustics, Ed. by W. P. Mason (Academic, New York, 1965), Vol. 3, Part B, p. 235.

    Google Scholar 

  13. V. L. Gurevich, Kinetics of Phonon Systems (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  14. H. Bilz and W. Kress, Phonon Dispersion Relations in Insulators (Springer, Berlin, 1979), Vol. 10.

    Book  Google Scholar 

  15. G. Nilson and G. Nelin, Phys. Rev. B: Solid State 3, 364 (1971).

    Article  ADS  Google Scholar 

  16. G. Nilson and G. Nelin, Phys. Rev. B: Solid State 5, 3151 (1972).

    Article  ADS  Google Scholar 

  17. I. G. Kuleev and I. I. Kuleev, Phys. Solid State 49(3), 437 (2007).

    Article  ADS  Google Scholar 

  18. M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. P. Zhernov, A. V. Inyushkin, A. N. Taldenkov, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, Phys. Rev. B: Condens. Matter 56, 9431 (1997).

    Article  ADS  Google Scholar 

  19. A. P. Zhernov and A. V. Inyushkin, Phys.-Usp. 44(8), 812 (2001); A. P. Zhernov and A. V. Inyushkin, Phys.-Usp. 45 (5), 527 (2002).

    Article  Google Scholar 

  20. I. G. Kuleev and I. I. Kuleev, JETP 93(3), 568 (2001).

    Article  ADS  Google Scholar 

  21. I. G. Kuleev, I. I. Kuleev, A. N. Taldenkov, A. V. Inyushkin, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, JETP 96(6), 1078 (2003).

    Article  ADS  Google Scholar 

  22. B. M. Mogilevskii and A. F. Chudnovskii, Thermal Conductivity of Semiconductors (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  23. I. G. Kuleev and I. I. Kuleev, Phys. Solid State 47(2), 312 (2005).

    Article  ADS  Google Scholar 

  24. I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elasticity Modules of Metals and Nonmetals (Naukova Dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  25. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953; Nauka, Moscow, 1978).

    MATH  Google Scholar 

  26. C. Herring, Phys. Rev. 95, 954 (1954).

    Article  ADS  MATH  Google Scholar 

  27. R. Berman, Thermal Conduction in Solids (Clarendon, Oxford, 1976; Mir, Moscow, 1979).

    Google Scholar 

  28. R. A. Hamilton and J. E. Parrot, Phys. Rev. 178, 1284 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Kuleyev.

Additional information

Original Russian Text © I.G. Kuleyev, I.I. Kuleyev, S.M. Bakharev, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 8, pp. 1564–1575.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuleyev, I.G., Kuleyev, I.I. & Bakharev, S.M. Effect of dispersion and damping of thermal phonon states on the longitudinal ultrasonic absorption in germanium crystals. Phys. Solid State 53, 1644 (2011). https://doi.org/10.1134/S1063783411080154

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1134/S1063783411080154

Keywords

Navigation