Skip to main content
Log in

Structural, elastic, and electronic properties of icosahedral boron subcarbides (B12C3, B13C2), subnitride B12N2, and suboxide B12O2 from data of SCC-DFTB calculations

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structural, elastic, and electronic properties of a series of icosahedral phases, such as boron subcarbides B12C3 and B13C2, subnitride B12N2, and suboxide B12O2, have been studied in the framework of the SCC-DFTB method. It has been found that the B12C2 and B13C2 phases manifest metal-like properties, while B12C3 and B12O2 are semiconductors. The estimates have shown that the insertion of 2p atoms (C, N, or O) into intericosahedral pores of elemental boron can cause both a decrease in its elastic modulus (an increase in the compressibility of B12N2) and a sharp increase in the modulus B (in subcarbides B12C3 and B12BCC). On the other hand, the insertion of 2p atoms into α-B12 will favor an increase in its hardness (suboxide B12O2 will have a maximum hardness).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boron and Refractory Borides, Ed. by V. I. Matkovich (Springer, Berlin, 1977).

    Google Scholar 

  2. K. C. Buschveck, Gmelin Handbook of Inorganic Chemistry, Vol. 13: Boron Compound, Elemental Boron and Boron Carbides (Springer, Berlin, 1981).

    Google Scholar 

  3. A. L. Ivanovskii, Usp. Khim. 66, 511 (1997).

    Google Scholar 

  4. A. R. Oganov and V. L. Solozhenko, J. Superhard Mater. 31, 285 (2009).

    Article  Google Scholar 

  5. B. Albert and H. Hillebrecht, Angew. Chem., Int. Ed. 48, 8640 (2009).

    Article  Google Scholar 

  6. R. Riedel, Adv. Mater. (Weinheim) 6, 549 (1994).

    Article  Google Scholar 

  7. B. A. Cook, J. L. Harringa, T. L. Lewis, and A. M. Russell, Src. Mater. 42, 597 (2000).

    Google Scholar 

  8. A. M. Russell, B. A. Cook, J. L. Harringa, and T. L. Lewis, Src. Mater. 46, 629 (2002).

    Google Scholar 

  9. X. Jiang, J. Zhao, A. Wu, Y. Bai, and X. Jiang, J. Phys.: Condens. Matter 22, 315503 (2010).

    Article  ADS  Google Scholar 

  10. E. Yu. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia, Y. Filinshuk, D. Chernyshov, V. Dmitriev, N. Miyajima, A. El Goresy, H. F. Braun, S. Van Smaalen, I. Kantor, V. Prakapenka, M. Hanfland, A. S. Mikhaylushkin, I. A. Abrikosov, and S. I. Simak, Phys. Rev. Lett. 102, 185501 (2009).

    Article  ADS  Google Scholar 

  11. V. Kevorkijan, S. D. Skapin, M. Jelen, K. Krnel, and A. Meden, Am. Ceram. Soc. Bull. 85, 9501 (2006).

    Google Scholar 

  12. D. Emin, J. Solid State Chem. 17, 1619 (2004).

    Article  ADS  Google Scholar 

  13. T. Letsoalo and J. E. Lowther, Physica B (Amsterdam) 403, 2760 (2008).

    Article  ADS  Google Scholar 

  14. D. W. He, Y. Zhao, L. Daemen, J. Qian, T. D. Shen, and T. W. Zerda, Appl. Phys. Lett. 81, 643 (2002).

    Article  ADS  Google Scholar 

  15. H. Gou, L. Hou, J. Zhang, G. Sun, L. Gao, and F. Gao, Phys. Status Solidi B 245, 58 (2008).

    Article  ADS  Google Scholar 

  16. H. Y. Gou, J. W. Xhang, and F. M. Gao, J. Phys.: Condens. Matter 20, 505211 (2008).

    Article  Google Scholar 

  17. W. Hayami and S. Otani, J. Solid State Chem. 182, 1856 (2009).

    Article  ADS  Google Scholar 

  18. Z. Zakhariev, M. Beshkova, V. Blaskov, I. Stambolova, and C. Perchemliev, J. Optoelectron. Adv. Mater. 11, 1533 (2009).

    Google Scholar 

  19. S. Veprek, J. Vac. Sci. Technol., A 17, 2401 (1999).

    Article  ADS  Google Scholar 

  20. R. Riedel, Adv. Mater. (Weinheim) 4, 759 (1992).

    Article  MathSciNet  Google Scholar 

  21. J. Haines, J. M. Leger, and G. Bocauillon, Annu. Rev. Mater. Res. 31, 1 (2001).

    Article  ADS  Google Scholar 

  22. J. J. Gilman, R. W. Cumberland, and R. B. Kaner, Int. J. Refract. Met. Hard Mater. 24, 1 (2006).

    Article  Google Scholar 

  23. V. V. Brazhkin, A. G. Lyapin, and J. Hemley, Philos. Mag. A 82, 321 (2002).

    Article  Google Scholar 

  24. V. V. Ivanovskaya and A. L. Ivanovskii, J. Superhard Mater. 32, 67 (2010).

    Article  Google Scholar 

  25. G. Seifert, D. Porezag, and T. Frauenheim, Int. J. Quantum Chem. 58, 185 (1996).

    Article  Google Scholar 

  26. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner, Phys. Rev. B: Condens. Matter 51, 12947 (1995).

    Article  ADS  Google Scholar 

  27. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B: Condens. Matter 58, 7260 (1998).

    Article  ADS  Google Scholar 

  28. A. M. Köoster, R. Flores-Moreno, G. Geudtner, A. Goursot, T. Heine, J. U. Reveles, D. R. Salahub, A. Vela, and S. Patchkovskii, deMon: A System of Programs for Density Functional Theory Calculations of Atoms, Molecules and Solids, Version 1.1. (National Research Council, Ottawa, 2004).

    Google Scholar 

  29. http://www.dftb.org/parameters/download/matsci/matsci-0-2/.

  30. A. L. Ivanovskii and G. P. Shveikin, Quantum Chemistry in Materials Science: Boron, Its Compounds and Alloys (Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 1997) [in Russian].

    Google Scholar 

  31. The Properties of Natural and Synthetic Diamond, Ed. by J. E. Field (Academic, London, 1992).

    Google Scholar 

  32. The Nature of Diamonds, Ed. by E. G. Harlow (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  33. T. Kenichi, Phys. Rev. B: Condens. Matter 70, 012101 (2004).

    Article  ADS  Google Scholar 

  34. H. Cynn, J. E. Klepeis, and C. S. Hoo, Phys. Rev. Lett. 88, 135701 (2002).

    Article  ADS  Google Scholar 

  35. C. Pantea, I. Mihut, H. Ledbeter, J. B. Betts, Y. Zhao, L. L. Daemen, H. Cynn, and A. Migliori, Acta Mater. 57, 544 (2009).

    Article  Google Scholar 

  36. C. Paniea, I. Stroe, H. Ledbetter, J. B. Betts, Y. Zhao, L. L. Daemen, H. Cynn, and A. Migliori, Phys. Rev. B: Condens. Matter 80, 024112 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ivanovskii.

Additional information

Original Russian Text © A.N. Enyashin, A.L. Ivanovskii, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 8, pp. 1493–1497.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enyashin, A.N., Ivanovskii, A.L. Structural, elastic, and electronic properties of icosahedral boron subcarbides (B12C3, B13C2), subnitride B12N2, and suboxide B12O2 from data of SCC-DFTB calculations. Phys. Solid State 53, 1569–1574 (2011). https://doi.org/10.1134/S1063783411080117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411080117

Keywords

Navigation