Skip to main content
Log in

On the passive electrode signal in X-ray detectors based on superconducting tunnel junctions

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

X-ray detectors based on superconducting tunnel junctions with the multilayer electrode structure described by the formula Ti/Nb/Al, AlO x /Al/Nb/NbN were studied. The main signal arose during X-ray absorption in the top electrode and had an energy resolution of ∼90 eV at the 5.9-keV line. The bottom passive Ti/Nb electrode provided rapid absorption of excess quasiparticles. The residual signal of the passive electrode was from 7 to 17% of the main signal amplitude. The dependences of the amplitude of this signal on the voltage and the absorbed X-ray energy were measured for detectors with different thicknesses of the top and bottom electrodes. The rate of quasiparticle trapping by the energy trap in the Ti/Nb bilayer was estimated. The main mechanisms of the formation of the passive electrode signal formation were considered and methods for its suppression were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Friedrich, J. Low Temp. Phys. 151, 277 (2008).

    Article  ADS  Google Scholar 

  2. O. J. Luiten, M. L. Van den Berg, J. Gomez Rivas, M. P. Bruijn, F. B. Kiewiet, and P. A. J. de Korte, in Proceedings of the 7th International Workshop on Low Temperature Detectors, Munich, Germany, July 27–August 2, 1997, Ed. by S. Cooper, p. 25.

  3. M. G. Kozin, I. L. Romashkina, S. A. Sergeev, L. V. Nefedov, V. A. Andrianov, V. N. Naumkin, V. P. Koshelets, and L. V. Filippenko, Nucl. Instrum. Methods Phys. Res., Sect. A 520, 250 (2004).

    Article  ADS  Google Scholar 

  4. N. E. Booth, Appl. Phys. Lett. 50, 293 (1987).

    Article  ADS  Google Scholar 

  5. V. A. Andrianov, V. P. Gor’kov, V. P. Koshelets, and L. V. Filippenko, Semiconductors 41(2), 215 (2007).

    Article  ADS  Google Scholar 

  6. A. A. Golubov, E. P. Houwman, J. G. Gijsbertsen, J. Flokstra, H. Rogalla, J. B. le Grand, and P. A. J. de Korte, Phys. Rev. B: Condens. Matter 49, 12953 (1994).

    Article  ADS  Google Scholar 

  7. A. A. Golubov, E. P. Houwman, J. G. Gijsbertsen, V. M. Krasnov, J. Flokstra, H. Rogalla, and M. Y. Kupriyanov, Phys. Rev. B: Condens. Matter 51, 1073 (1995).

    Article  ADS  Google Scholar 

  8. L. V. Filippenko, Candidate’s Dissertation (Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, 2009).

    Google Scholar 

  9. V. A. Andrianov, V. P. Gor’kov, M. G. Kozin, I. L. Romashkina, S. A. Sergeev, V. S. Shpingel’, P. N. Dmitriev, and V. P. Koshelets, Phys. Solid State 41(7), 1063 (1999).

    Article  ADS  Google Scholar 

  10. V. V. Samedov and V. A. Andrianov, AIP Conf. Proc. 605, 47 (2002).

    Article  ADS  Google Scholar 

  11. N. Booth and D. J. Goldie, Supercond. Sci. Technol. 9, 493 (1996).

    Article  ADS  Google Scholar 

  12. S. B. Kaplan, C. C. Chi, D. N. Landberg, J. J. Chang, S. Jafarey, and D. J. Scalapino, Phys. Rev. B: Solid State 14, 4854 (1976).

    Article  ADS  Google Scholar 

  13. L. Shumei, Zh. Dianlin, J. Xiunian, L. Li, L. Shanlin, K. Ning, W. Xiaosong, and J. J. Lin, Phys. Rev. B: Condens. Matter 62, 8695 (2000).

    Article  ADS  Google Scholar 

  14. G. Brammertz, A. Poelaert, A. A. Golubov, P. Verhoeve, A. Peacock, and H. Rogalla, J. Appl. Phys. 90, 355 (2001).

    Article  ADS  Google Scholar 

  15. G. Brammertz, A. A. Golubov, P. Verhoeve, R. den Hartog, A. Peacock, and H. Rogalla, Appl. Phys. Lett. 80, 2955 (2002).

    Article  ADS  Google Scholar 

  16. H. W. Weber, E. Seidl, C. Laa, E. Schachinger, M. Pro- hammer, A. Junod, and D. Eckert, Phys. Rev. B: Condens. Matter 44, 7585 (1991).

    Article  ADS  Google Scholar 

  17. Zh. Dianlin, L. Shumei, J. Xiunian, L. Jianlin, X.-G. Zhangz, W. Ruju, K. Ning, Ch. Zhaola, L. Li, and J. J. Linx, Int. J. Mod. Phys. B 19, 3869 (2005).

    Article  ADS  Google Scholar 

  18. B. A. Sanborn, P. B. Allen, and D. A. Papaconstantopoulos, Phys. Rev. B: Condens. Matter 40, 6037 (1989).

    Article  ADS  Google Scholar 

  19. V. A. Andrianov, L. V. Filippenko, V. P. Gorkov, and V. P. Koshelets, J. Low Temp. Phys. 151, 1049 (2008).

    Article  ADS  Google Scholar 

  20. V. A. Andrianov, M. G. Kozin, P. N. Dmitriev, V. P. Koshelets, I. L. Romashkina, and S. A. Sergeev, AIP. Conf. Proc. 605, 161 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Andrianov.

Additional information

Original Russian Text © V.A. Andrianov, V.P. Koshelets, L.V. Filippenko, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 8, pp. 1466–1472.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrianov, V.A., Koshelets, V.P. & Filippenko, L.V. On the passive electrode signal in X-ray detectors based on superconducting tunnel junctions. Phys. Solid State 53, 1540–1546 (2011). https://doi.org/10.1134/S106378341108004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341108004X

Keywords

Navigation