Skip to main content
Log in

Direct opal-like structures consisting of monodisperse polymer particles and synthesis of the related inverse structures

  • Proceedings of the All-Russian Conference with Elements of the Scientific School for the Youth “Opal-Like Structures” (St. Petersburg, Russia, May 12–14, 2010)
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Three-dimensional periodic solid-state film structures with a face-centered cubic lattice and a high degree of perfection have been prepared from monodisperse particles of styrene copolymers with methacrylic acid. It has been shown that these structures can be successfully used not only as model objects for studying specific features of light propagation in photonic crystals but also as templates for synthesizing inverse opal-like structures. The influence of the degree of hydrophilization of the surface layer of polymer particles forming a polymer template and the template synthesis conditions on the quality of an inverse opal-like TiO2-based structure has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Chemistry of Nanostructured Materials, Ed. by Peidong Yang (World Scientific, Singapore, 2003).

    Google Scholar 

  2. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications, Ed. by A. P. Shpar, G. V. Kurduimov, and P. P. Gorbyk (Springer, Heidelberg, 2009).

    Google Scholar 

  3. Colloids and Colloid Assemblies, Ed. by F. Caruso (Wiley, Weinheim, 2004).

    Google Scholar 

  4. Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater. (Weinheim) 12, 562 (2000).

    Article  Google Scholar 

  5. Y. H. Ye, S. Badilescu, and V. V. Truong, Appl. Phys. Lett. 81, 616 (2002).

    Article  ADS  Google Scholar 

  6. O. D. Velev and A. M. Lenhoff, Curr. Opin. Colloid Interface Sci. 5(1-2), 56 (2000).

    Article  Google Scholar 

  7. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, K. B. Samusev, D. E. Usnyat, and M. F. Limonov, Phys. Rev. B: Condens. Matter 70, 113104 (2004).

    Article  ADS  Google Scholar 

  8. C. E. Reese, C. D. Guerrero, J. M. Weissman, K. Lee, and S. A. Asher, J. Colloid Interface Sci. 232, 76 (2000).

    Article  Google Scholar 

  9. A. Yu. Men’shikova, Ross. Nanotekhnol. 5(1–2), 52 (2010) [Nanotechnol. Russ. 5 (1–2), 35 (2010)].

    Google Scholar 

  10. A. Yu. Men’shikova, B. M. Shabsel’s, T. G. Evseeva, N. N. Shevchenko, and A. Yu. Bilibin, Zh. Prikl. Khim. (St. Petersburg) 78(1), 161 (2005) [Russ. J. Appl. Chem. 78 (1), 159 (2005)].

    Google Scholar 

  11. A. Yu. Men’shikova, A. Yu. Bilibin, N. N. Shevchenko, B. M. Shabsel’s, T. G. Evseeva, A. G. Bazhenova, and A. V. Sel’kin, Vysokomol. Soedin., Ser. A 48(9), 1579 (2006) [Polym. Sci., Ser. A 48 (9), 910 (2006)].

    Google Scholar 

  12. A. Yu. Menshikova, B. M. Shabsels, N. N. Shevchenko, A. G. Bazhenova, A. B. Pevtsov, A. V. Sel’kin, and A. Yu. Bilibin, Colloids Surf., A 298, 27 (2007).

    Article  Google Scholar 

  13. G. Waterhouse and M. Waterland, Polyhedron 26, 356 (2007).

    Article  Google Scholar 

  14. A. Stein and R. C. Schroden, Curr. Opin. Solid State Mater. Sci. 5, 553 (2001).

    Article  ADS  Google Scholar 

  15. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, J. Am. Ceram. Soc. 85, 1383 (2002).

    Article  Google Scholar 

  16. R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, Chem. Mater. 14, 3305 (2002).

    Article  Google Scholar 

  17. J. I. L. Chen, G. von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, Adv. Mater. (Weinheim) 18, 1915 (2006).

    Article  Google Scholar 

  18. R. Hidalgo-Alvarez, A. Martin-Rodriguez, A. Fernandez, D. Bastos, F. Martinez, and F. J. de las Nieves, Adv. Colloid Interface Sci. 67, 1 (1996).

    Article  Google Scholar 

  19. J. S. Husband and J. M. Adams, Colloid Polym. Sci. 270, 1194 (1992).

    Article  Google Scholar 

  20. A. V. Sel’kin, A. Yu. Bilibin, A. Yu. Men’shikova, Yu. A. Pashkov, N. N. Shevchenko, and A. G. Bazhenova, Izv. Akad. Nauk, Ser. Fiz. 69, 1111 (2005).

    Google Scholar 

  21. A. G. Bazhenova, A. V. Sel’kin, A. Yu. Men’shikova, and N. N. Shevchenko, Fiz. Tverd. Tela (St. Petersburg) 49(11), 2010 (2007) [Phys. Solid State 49 (11), 2109 (2007)].

    Google Scholar 

  22. A. G. Bazhenova, A. Yu. Men’shikova, A. V. Sel’kin, V. G. Fedotov, N. N. Shevchenko, and A. V. Yakimanskii, Khim. Vys. Energii 42(4), 27 (2008) [High Energy Chem. 42 (7), 527 (2008)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Menshikova.

Additional information

Original Russian Text © A.Yu. Menshikova, N.N. Shevchenko, I.V. Bugakov, A.V. Yakimansky, A.V. Sel’kin, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 6, pp. 1091–1096.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menshikova, A.Y., Shevchenko, N.N., Bugakov, I.V. et al. Direct opal-like structures consisting of monodisperse polymer particles and synthesis of the related inverse structures. Phys. Solid State 53, 1155–1160 (2011). https://doi.org/10.1134/S1063783411060230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411060230

Keywords

Navigation