Skip to main content
Log in

Morphological transition from the Euclidean to the fractal shape of the Lüders band in the aluminum-magnesium alloy AMg6

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The spatio-temporal structure of the Lüders band in artificially aged and recrystallized AMg6 alloys deformed under uniaxial tension at a constant stress rate = const has been investigated using high-speed video recording. A kinetic morphological transition has been revealed between the Euclidean and fractal shapes of the Lüders band due to a transformation of the initial microstructure of the alloy from the precipitation structure formed as a result of the artificial aging to the collective recrystallization structure. The mechanisms of formation of the dendrite-like fractal structure of the Lüders front have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Neuhauser, in Dislocation in Solids, Ed. by F. R. N. Nabarro (North-Holland, Amsterdam, 1983), Vol. 6, p. 319.

    Google Scholar 

  2. H. Neuhauser and A. Hampel, Scr. Metall. Mater. 29, 1151 (1993).

    Article  Google Scholar 

  3. A. Hampel and H. Neuhauser, Phys. Status Solidi A 100(1), 441 (1987).

    Google Scholar 

  4. E. O. Hall, Proc. Phys. Soc., London, Sect. B 64, 742 (1951).

    Article  ADS  Google Scholar 

  5. R. B. Liss, Acta Metall. 5, 341 (1957).

    Article  Google Scholar 

  6. W. Sylwestrowicz and E. O. Hall, Proc. Phys. Soc., London, Sect. B 64, 495 (1951).

    Article  ADS  Google Scholar 

  7. T. D. Boxall and B. B. Hundy, Metallurgia 51, 52 (1955).

    Google Scholar 

  8. R. Iricibar and J. Mazza, Scr. Metall. 9, 1045 (1975).

    Article  Google Scholar 

  9. H. Louche and A. Ohrysochoos, Mater. Sci. Eng., A 307, 15 (2001).

    Article  Google Scholar 

  10. D. W. Moon, Scr. Metall. 5, 213 (1971).

    Article  Google Scholar 

  11. D. J. Lloyd and L. R. Morris, Acta Metall. 25, 857 (1977).

    Article  Google Scholar 

  12. K. Prewo, J. C. M. Li, and M. Gensamer, Metall. Trans. 3, 2261 (1972).

    Article  Google Scholar 

  13. W. M. Lomer, J. Mech. Phys. Solids 1, 64 (1952).

    Article  ADS  Google Scholar 

  14. I. Zhang and Y. Jiang, Int. J. Plast. 21, 651 (2005).

    Article  MATH  Google Scholar 

  15. A. A. Shibkov, A. A. Mazilkin, S. G. Protasova, D. V. Mikhlik, A. E. Zolotov, M. A. Zheltov, and A. V. Shuklinov, Deform. Razrushenie Mater., No. 5, 24 (2008).

  16. A. A. Shibkov, M. A. Lebedkin, M. A. Zheltov, V. V. Skvortsov, R. Yu. Kol’tsov, and A. V. Shuklinov, Zavod. Lab. 71(7), 20 (2005).

    Google Scholar 

  17. A. A. Shibkov, R. Yu. Kol’tsov, M. A. Zheltov, A. V. Shuklinov, and M. A. Lebedkin, Izv. Akad. Nauk, Ser. Fiz. 70(9), 1372 (2006).

    Google Scholar 

  18. F. B. Klose, F. Hagemann, P. Hähner, and H. Neuhauser, Mater. Sci. Eng., A 387–389, 93 (2004).

    Google Scholar 

  19. A. A. Shibkov and A. E. Zolotov, Pis’ma Zh. Eksp. Teor. Fiz. 90(5), 412 (2009) [JETP Lett. 90 (5), 370 (2009)].

    Google Scholar 

  20. P. Hahner, Scr. Metall. Mater. 29(9), 1171 (1993).

    Article  Google Scholar 

  21. G. F. Xiang, Q. C. Zhang, H. W. Li, X. P. Wu, and X. Y. Ju, Scr. Mater. 56, 721 (2007).

    Article  Google Scholar 

  22. Y. Estrin and L. P. Kubin, in Continuum Models for Materials with Microstructure, Ed. by H.-B. Muhlhaus (Wiley, New York, 1995), p. 395.

    Google Scholar 

  23. P. Hahner, Mater. Sci. Eng., A 164, 23 (1993).

    Article  Google Scholar 

  24. A. A. Shibkov, A. E. Zolotov, and M. A. Zheltov, Fiz. Tverd. Tela (St. Petersburg) 52(11), 2223 (2010) [Phys. Solid State 52 (11), 2376 (2010)].

    Google Scholar 

  25. J. Feder, Fractals (Plenum, New York, 1989; Mir, Moscow, 1991).

    MATH  Google Scholar 

  26. E. Ben-Jacob and P. Garik, Nature (London) 343(8), 523 (1990).

    Article  ADS  Google Scholar 

  27. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys (Moscow Institute of Steel and Alloys, Moscow, 2001) [in Russian].

    Google Scholar 

  28. F. L. Lokshin, G. V. Shakhanova, A. T. Ageeva, and L. N. Bakanova, Metalloved. Term. Obrab. Met., No. 9, 59 (1966).

  29. M. V. Markushev and M. Yu. Murashkin, Fiz. Met. Metalloved. 92(1), 90 (2001) [Phys. Met. Metallogr. 92 (1), 84 (2001)].

    Google Scholar 

  30. M. V. Markushev and M. Yu. Murashkin, Fiz. Met. Metalloved. 98(2), 116 (2004) [Phys. Met. Metallogr. 98 (2), 221 (2004)].

    Google Scholar 

  31. V. N. Pereverzentsev, Fiz. Met. Metalloved. 93(3), 1 (2002) [Phys. Met. Metallogr. 93 (3), 207 (2002)].

    Google Scholar 

  32. A. N. Orlov, V. N. Pereverzentsev, and V. V. Rybin, Grain Boundaries in Metals (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  33. V. N. Pereverzentsev, A. S. Pupynin, and Yu. V. Svirina, Fiz. Met. Metalloved. 100(1), 17 (2005) [Phys. Met. Metallogr. 100 (1), 12 (2005)].

    Google Scholar 

  34. L. Niemeyer, L. Pietronero, and H. J. Wiesmann, Phys. Rev. Lett. 52(12), 1033 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  35. Y. Shim, L. E. Levine, and R. Thomson, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 046 146 (2002).

    Google Scholar 

  36. T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47(19), 1400 (1981).

    Article  ADS  Google Scholar 

  37. E. Brener, H. Müller-Krumbhaar, D. Temkin, and T. Abel, Physica A (Amsterdam) 249, 73 (1998).

    Article  Google Scholar 

  38. A. A. Shibkov, Yu. L. Golovin, M. A. Zheltov, A. A. Korolev, and A. A. Leonov, Physica A (Amsterdam) 319, 65 (2003).

    Article  ADS  Google Scholar 

  39. A. A. Shibkov, M. A. Zheltov, A. A. Korolev, A. A. Kazakov, and A. A. Leonov, J. Cryst. Growth 285(1–2), 215 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shibkov.

Additional information

Original Russian Text © A.A. Shibkov, A.E. Zolotov, M.A. Zheltov, A.A. Denisov, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 5, pp. 833–841.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibkov, A.A., Zolotov, A.E., Zheltov, M.A. et al. Morphological transition from the Euclidean to the fractal shape of the Lüders band in the aluminum-magnesium alloy AMg6. Phys. Solid State 53, 887–895 (2011). https://doi.org/10.1134/S1063783411050271

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411050271

Keywords

Navigation