Skip to main content
Log in

Spin-wave spectroscopy and application of its methods to heterostructures of silicon dioxide with Co nanoparticles on a GaAs substrate

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A method has been developed for determining magnetic and electrical characteristics of film nanostructures containing magnetic nanoparticles from dispersion curves of surface spin waves propagating in these nanostructures. The dispersion curves of spin waves are determined by the dynamics of the spin component described by the generalized Landau-Lifshitz equations and an alternating electromagnetic field induced by a spin wave. Since spin waves are very sensitive to inhomogeneity of magnetic parameters, spin disorder, and conductivity of an object near or inside which these waves propagate, they can be used for determining magnetic and electrical characteristics of the objects under investigation. The developed calculation method, which can be employed both in spin-wave spectroscopy and in analysis of dispersion curves obtained by other methods, has been used for determining parameters of heterostructures consisting of a SiO2 film with Co nanoparticles on a GaAs substrate. It has been found from the shape of dispersion curves of the surface spin waves that, in the film near the interface, spins of the nanoparticles are close to a ferromagnetic ordering, whereas near the free surface, the spin orientation of nanoparticles is more chaotic. It has been revealed that a conducting layer is formed in GaAs, and the SiO2(Co) film near the interface has an increased conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Petrakovskii, Usp. Fiz. Nauk 134(2), 305 (1981) [Sov. Phys.—Usp. 24 (6), 511 (1981)].

    Article  Google Scholar 

  2. T. Kaneyoshi, Introduction to Amorphous Magnets (World Scientific, Singapore, 1992).

    Google Scholar 

  3. The Magnetism of Amorphous Metals and Alloys, Ed. by J. A. Fernandez-Baca and Wai-Yim Ching (World Scientific, Singapore, 1995).

    Google Scholar 

  4. R. C. O’Handley, Modern Magnetic Materials Principles and Applications (Wiley, New York, 2000).

    Google Scholar 

  5. Yu. V. Gulyaev, P. E. Zil’berman, G. T. Kazakov, and V. V. Tikhonov, Pis’ma Zh. Tekh. Fiz. 11(2), 97 (1985) [Sov. Tech. Phys. Lett. 11 (1), 38 (1985)].

    Google Scholar 

  6. P. E. Zil’berman, G. T. Kazakov, and V. V. Tikhonov, Radiotekh. Elektron. 32(4), 710 (1987).

    ADS  Google Scholar 

  7. A. A. Stashkevich, Y. Roussigné, P. Djemia, D. Billet, A. I. Stognij, N. N. Novitskii, G. A. Wurtz, A. V. Zayats, G. Viau, G. Chaboussant, F. Ott, S. Gautrot, M. P. Kostylev, L. V. Lutsev, and V. Belotelov, J. Appl. Phys. 104(9), 093912 (2008).

    Article  ADS  Google Scholar 

  8. A. A. Stashkevich, Y. Roussigné, A. I. Stognij, N. N. Novitskii, M. P. Kostylev, G. A. Wurtz, A. V. Zayats, and L. V. Lutsev, Phys. Rev. B: Condens. Matter 78(21), 212404 (2008).

    Article  ADS  Google Scholar 

  9. A. A. Stashkevich, Y. Roussigné, A. I. Stognij, N. N. Novitskii, G. A. Wurtz, A. V. Zayats, G. Viau, G. Chaboussant, F. Ott, L. V. Lutsev, P. Djemia, M. P. Kostylev, and V. Belotelov, J. Magn. Magn. Mater. 321(7), 876 (2009).

    Article  ADS  Google Scholar 

  10. L. V. Lutsev, S. V. Yakovlev, and V. I. Siklitskii, Fiz. Tverd. Tela (St. Petersburg) 42(6), 1105 (2000) [Phys. Solid State 42 (6), 1139 (2000)].

    Google Scholar 

  11. L. V. Lutsev and S. V. Yakovlev, in Proceedings of the XVII International School-Workshop “New Magnetic Materials for Microelectronics,” Moscow, Russia, June 20–23, 2000 (Moscow, 2000), p. 524.

  12. L. V. Lutsev, S. Yakovlev, and C. Brosseau, J. Appl. Phys. 101(3), 034320 (2007).

    Article  ADS  Google Scholar 

  13. L. V. Lutsev, S. Yakovlev, V. Castel, and C. Brosseau, J. Phys. D: Appl. Phys. 43(32), 325302 (2010).

    Article  Google Scholar 

  14. L. V. Lutsev, J. Phys.: Condens. Matter 17(38), 6057 (2005).

    Article  ADS  Google Scholar 

  15. L. V. Lutsev, http://arxiv.org/abs/0801.4633 (2008).

  16. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (The Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, United States, 2004).

    Google Scholar 

  17. R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems (Elsevier, Amsterdam, The Netherlands, 2004).

    Google Scholar 

  18. L. V. Lutsev, A. I. Stognii, and N. N. Novitskii, Pis’ma Zh. Eksp. Teor. Fiz. 81(10), 636 (2005) [JETP Lett. 81 (10), 514 (2005)].

    Google Scholar 

  19. L. V. Lutsev, A. I. Stognij, N. N. Novitskii, and A. A. Stashkevich, J. Magn. Magn. Mater. 300(1), e12 (2006).

    Article  ADS  Google Scholar 

  20. L. V. Lutsev, A. I. Stognij, and N. N. Novitskii, Phys. Rev. B: Condens. Matter 80(18), 184423 (2009).

    Article  ADS  Google Scholar 

  21. L. V. Lutsev, in Mathematical Physics Research Developments, Ed. by M. B. Levy (Nova Science, New York, United States, 2009), p. 141.

    Google Scholar 

  22. S. Krupika, Physik der Ferrite und der verwandten magnetischen Oxide (Academia, Prague, 1973; Mir, Moscow, 1976), Vol. 2 [in German and in Russian].

    Book  Google Scholar 

  23. Yu. A. Izyumov, F. A. Kassan-ogly, and Yu. N. Skryabin, Field Methods in the Theory of Ferromagnetism (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  24. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin Waves (Nauka, Moscow, 1967; North-Holland, Amsterdam, The Netherlands, 1968).

    Google Scholar 

  25. F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators (Plenum, New York, United States, 1980; Mir, Moscow, 1984), Vol. 1.

    MATH  Google Scholar 

  26. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Nauka, Moscow, 1994; CRC Press, Boca Raton, Florida, 1996).

    Google Scholar 

  27. http://mathworld.wolfram.com/EulerAngles.html.

  28. B. V. Gnedenko, Theory of Probability (Gordon and Breach, Amsterdam, The Netherlands, 1997; Editorial URSS, Moscow, 2005).

    MATH  Google Scholar 

  29. L. V. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  30. D. D. Stancil, Theory of Magnetostatic Waves (Springer, New York, United States, 1993).

    Book  Google Scholar 

  31. P. Kabos and V. S. Stalmachov, Magnetostatic Waves and Their Applications (Chapman and Hall, New York, United States, 1994).

    Book  Google Scholar 

  32. L. V. Lutsev, Nanostrukt., Mat. Fiz. Model. 1(1), 59 (2009).

    Google Scholar 

  33. http://mathworld.wolfram.com/topics/SpecialFunctions.html.

  34. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, New York, United States, 1995).

    Google Scholar 

  35. V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1971; Marcel Dekker New York, United States, 1971).

    Google Scholar 

  36. T. Morikawa, M. Suzuki, and Y. Taga, J. Appl. Phys. 83, 6664 (1998).

    Article  ADS  Google Scholar 

  37. S. Ohnima, N. Kobayashi, T. Masumoto, S. Mitani, and H. Fujimori, J. Appl. Phys. 85, 4574 (1999).

    Article  ADS  Google Scholar 

  38. L. V. Lutsev, J. Phys.: Condens. Matter 18, 5881 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Lutsev.

Additional information

Original Russian Text © L.V. Lutsev, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 5, pp. 1014–1025.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutsev, L.V. Spin-wave spectroscopy and application of its methods to heterostructures of silicon dioxide with Co nanoparticles on a GaAs substrate. Phys. Solid State 53, 1078–1091 (2011). https://doi.org/10.1134/S1063783411050179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411050179

Keywords

Navigation