Skip to main content
Log in

Capacity and thermal conductivity of a nanocomposite chrysolite asbestos-KDP (KH2PO4)

  • Thermal Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A nanocomposite chrysotile-KDP (KH2PO4) was prepared. KDP was introduced into empty nanochannels of chrysotile asbestos with diameters of ∼5 nm. Thermal conductivity κ and heat capacity at a constant pressure C p of the samples of chrysotile asbestos and nanocomposite chrysotile asbestos-KDP were measured in a temperature range of 80–300 K. Based on the analysis of the behavior of temperature dependences κ(T) and C p (T) of the composite, temperatures of the ferroelectric transition T F for KDP in nanochannels of chrysotile asbestos were determined. It turned out to be equal to ∼250 K at T F ∼ 122 K for massive KDP samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. Kumzerov and S. Vakhrushev, in Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa (American Scientific Publishers, Valencia, California, United States, 2004), vol. 7, p. 811.

    Google Scholar 

  2. I. D. Morokhov, V. P. Petinov, L. N. Trusov, and V. F. Petrunin, Usp. Fiz. Nauk 133(4), 653 (1981) [Sov. Phys.-Usp. 24 (4), 295 (1981)].

    Article  Google Scholar 

  3. Yu. Kumzerov, in Nanostructured Films and Coatings, Ed. by Gan-Moog Chow, L. A. Ovidko, and T. Tsakalakos (Kluwer, Dordrecht, The Netherlands, 2000), p. 63.

    Google Scholar 

  4. V. N. Bogomolov, N. F. Kartenko, D. A. Kurdyukov, L. S. Parfen’eva, I. A. Smirnov, N. V. Sharenkova, H. Misiorek, and A. Jezowski, Fiz. Tverd. Tela (St. Petersburg) 45(5), 911 (2003) [Phys. Solid State 45 (5), 957 (2003)].

    Google Scholar 

  5. L. S. Parfen’eva, I. A. Smirnov, A. V. Fokin, H. Misiorek, J. Mucha, and A. Jezowski, Fiz. Tverd. Tela (St. Petersburg) 45(2), 359 (2003) [Phys. Solid State 45 (2), 381 (2003)].

    Google Scholar 

  6. E. V. Colla, A. F. Fokin, and Yu. Kumzerov, Solid State Commun. 103, 127 (1997).

    Article  ADS  Google Scholar 

  7. Yu. A. Kumzerov, I. A. Smirnov, Yu. A. Firsov, L. S. Parfen’eva, H. Misiorek, J. Mucha, and A. Jezowski, Fiz. Tverd. Tela (St. Petersburg) 48(8), 1498 (2006) [Phys. Solid State 48 (8), 1584 (2006)].

    Google Scholar 

  8. Y. G. Wang, P. L. Zhang, and W. L. Zhong, Solid State Commun. 92, 519 (1994).

    Article  ADS  Google Scholar 

  9. W. L. Zhong, Y. G. Wang, P. L. Zhang, and B. D. Qu, Phys. Rev. B: Condens. Matter 50, 698 (1994).

    Article  ADS  Google Scholar 

  10. Yu. A. Kumzerov, L. S. Parfen’eva, I. A. Smirnov, H. Misiorek, J. Mucha, and A. Jezowski, Fiz. Tverd. Tela (St. Petersburg) 45(1), 56 (2003) [Phys. Solid State 45 (1), 57 (2003)].

    Google Scholar 

  11. Yu. A. Kumzerov, L. S. Parfen’eva, I. A. Smirnov, A. I. Krivchikov, G. A. Zvyagina, V. D. Fil’, H. Misiorek, J. Mucha, and A. Jezowski, Fiz. Tverd. Tela (St. Petersburg) 47(2), 357 (2005) [Phys. Solid State 47 (2), 370 (2005)].

    Google Scholar 

  12. V. V. Bakhterev and V. I. Solomonov, Neorg. Mater. 31, 567 (1995).

    Google Scholar 

  13. K. Yada, Acta Crystallogr. 23, 704 (1967).

    Article  Google Scholar 

  14. D. Wlosewicz, T. Plackowski, and K. Rogacki, Cryogenics 32, 265 (1992).

    Article  Google Scholar 

  15. A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).

    Article  ADS  Google Scholar 

  16. J. K. Krüger, K. P. Bohn, A. le Coutre, and P. Mesquida, Meas. Sci. Technol. 9, 1866 (1998).

    Article  ADS  Google Scholar 

  17. Fengqi Lin and Da-Ming Zhu, Phys. Rev. B: Condens. Matter 49, 16025 (1994).

    Article  ADS  Google Scholar 

  18. W. Reese and L. F. May, Phys. Rev. 162, 510 (1967).

    Article  ADS  Google Scholar 

  19. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997), p. 211.

    Google Scholar 

  20. Y. Suemune, J. Phys. Soc. Jpn. 22, 735 (1967).

    Article  ADS  Google Scholar 

  21. J. J. De Yoreo, R. O. Rohl, and G. Burns, Phys. Rev. B: Condens. Matter 32, 5780 (1985).

    Article  ADS  Google Scholar 

  22. J. J. Freeman and A. C. Anderson, Phys. Rev. B: Condens. Matter 34, 5684 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Smirnov.

Additional information

Original Russian Text © Yu.A. Kumzerov, N.F. Kartenko, L.S. Parfen’eva, I.A. Smirnov, A.V. Fokin, D. Wlosewicz, H. Misiorek, A. Jezowski, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 5, pp. 1033–1036.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumzerov, Y.A., Kartenko, N.F., Parfen’eva, L.S. et al. Capacity and thermal conductivity of a nanocomposite chrysolite asbestos-KDP (KH2PO4). Phys. Solid State 53, 1099–1103 (2011). https://doi.org/10.1134/S1063783411050167

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411050167

Keywords

Navigation