Skip to main content
Log in

Effect of coverage by carbon on the possibility of forming an interstitial solid solution in Fe(001) and Fe(111) subsurface layers

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The interaction between carbon adatoms as a function of the coverage of the Fe(001) and Fe(111) surfaces by carbon has been theoretically investigated using first-principles calculations in terms of the density functional theory. It has been established for the first time that the sequential filling of the upper surface layer by carbon atoms leads to the embedding of a part of atoms in the subsurface iron layer due to the their collective interaction, which provides the possibility of forming the interstitial solid solution. It has been demonstrated that the high coverage of the (001) surface by carbon leads to a considerable decrease in the energy barrier to the diffusion of carbon atoms into the subsurface layer as compared to the diffusion barrier for single atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yudasaka, Y. Kasuya, F. Kokai, K. Takahashi, M. Takizawa, S. Bandow, and S. Iijima, Appl. Phys. A: Mater. Sci. Process. 74, 377 (2002).

    Article  ADS  Google Scholar 

  2. Z. P. Huang, D. Z. Wang, J. G. Wen, M. Sennet, H. Gibson, and Z. F. Ren, Appl. Phys. A: Mater. Sci. Process. 74, 387 (2002).

    Article  ADS  Google Scholar 

  3. A. A. Novakova, T. Yu. Kiseleva, B. P. Tarasov, and V. E. Muradyan, Poverkhnost, No. 3, 70 (2004).

  4. A. Gorbunov, O. Jost, W. Pompe, and A. Graff, Carbon 40, 113 (2002).

    Article  Google Scholar 

  5. V. V. Chesnokov and R. A. Buyanov, Usp. Khim. 69, 675 (2000).

    Google Scholar 

  6. N. Grobert, M. Terrones, S. Trasobares, K. Kordatos, H. Terrones, J. Olivares, J. P. Zhang, Ph. Redlich, W. K. Hsu, C. L. Reeves, D. J. Wallis, Y. Q. Zhu, J. P. Hare, A. J. Pidduck, H. W. Kroto, and D. R. M. Waltonm, Appl. Phys. A: Mater. Sci. Process. 70, 175 (2000).

    Article  ADS  Google Scholar 

  7. F. Abild-Pedersen, J. K. Nørskov, J. R. Rostrup- Nielsen, J. Sehested, and S. Helveg, Phys. Rev. B: Condens. Matter 73, 115419 (2006).

    Article  ADS  Google Scholar 

  8. D. E. Jiang and E. A. Carter, Phys. Rev. B: Condens. Matter 67, 214103 (2003).

    Article  ADS  Google Scholar 

  9. D. J. Siegel and J. C. Hamilton, Phys. Rev. B: Condens. Matter 68, 094105 (2003).

    Article  ADS  Google Scholar 

  10. I. V. Mutigullin, D. I. Bazhanov, A. A. Novakova, Yu. V. Korneeva, B. V. Potapkin, and A. A. Katsnel’son, Poverkhnost, No. 9, 103 (2007).

  11. D. E. Jiang and E. A. Carter, Phys. Rev. B: Condens. Matter 71, 045402 (2005).

    Article  ADS  Google Scholar 

  12. D. C. Sorescu, Phys. Rev. B: Condens. Matter 73, 155420 (2006).

    Article  ADS  Google Scholar 

  13. Q.-M. Zhang, J. C. Wells, X. G. Gong, and Z. Zhang, Phys. Rev. B: Condens. Matter 69, 205413 (2004).

    Article  ADS  Google Scholar 

  14. V. Blum, A. Schmidt, W. Meier, L. Hammer, and K. Heinz, J. Phys.: Condens. Matter 15, 3517 (2003).

    Article  ADS  Google Scholar 

  15. G. Panaccione, J. Fujii, I. Vobornik, G. Trimarchi, N. Binggeli, A. Coldoni, R. Larciprete, and G. Rossi, Phys. Rev. B: Condens. Matter 73, 035431 (2006).

    Article  ADS  Google Scholar 

  16. M. Bader, C. Ocal, B. Hillert, J. Haase, and A. M. Bradshaw, Phys. Rev. B: Condens. Matter 35, 5900 (1987).

    Article  ADS  Google Scholar 

  17. N. A. Levanov, V. S. Stepanyuk, W. Hergert, A. A. Katsnel’son, A. E. Moroz, and K. Kokko, Fiz. Tverd. Tela (St. Petersburg) 41(7), 1329 (1999) [Phys. Solid State 41 (7), 1216 (1999)].

    Google Scholar 

  18. F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371 (2005).

    Article  ADS  Google Scholar 

  19. I. V. Mutigullin and D. I. Bazhanov, Zh. Eksp. Teor. Fiz. 137(1), 93 (2010) [JETP 110 (1), 81 (2010)].

    Google Scholar 

  20. P. E. Blöchl, Phys. Rev. B: Condens. Matter 50, 17953 (1994).

    Article  ADS  Google Scholar 

  21. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    Article  ADS  Google Scholar 

  22. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B: Condens. Matter 46, 6671 (1992).

    Article  ADS  Google Scholar 

  23. H. Monkhorst and J. Pack, Phys. Rev. B: Solid State 13, 5188 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  24. I. V. Mutigullin and D. I. Bazhanov, Perspek. Mater., No. 6, 216 (2008).

  25. Ŝ. Pick, P. Légaré, and C. Demangeat, Phys. Rev. B: Condens. Matter 75, 195446 (2007).

    Article  ADS  Google Scholar 

  26. A. Soon, L. Wong, B. Delley, and C. Stampfl, Phys. Rev. B: Condens. Matter 77, 125423 (2008).

    Article  ADS  Google Scholar 

  27. G. Mills, H. Jonsson, and G. K. Schenter, Surf. Sci. 324, 305 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mutigullin.

Additional information

Original Russian Text © I.V. Mutigullin, D.I. Bazhanov, A.S. Ilyushin, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 3, pp. 558–563.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutigullin, I.V., Bazhanov, D.I. & Ilyushin, A.S. Effect of coverage by carbon on the possibility of forming an interstitial solid solution in Fe(001) and Fe(111) subsurface layers. Phys. Solid State 53, 599–605 (2011). https://doi.org/10.1134/S1063783411030206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411030206

Keywords

Navigation