Skip to main content
Log in

First-principles calculation of the energy of compressed calcium

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The energy of a calcium crystal with a simple cubic lattice as a function of the ratio (t/U) between two internal parameters of the Hubbard model has been calculated using the Hubbard model for the s bands, equations of motion, and direct algebraic method. The electronic spectra have been calculated for the 4s band of the crystal in two principal symmetry directions of the first Brillouin zone. The calculations have been performed at temperatures T 1 = 0 K and T 2 = 1000 K. All calculations have been carried out for different interaction energies U of s electrons, one angle, and their different concentrations n in the range 0 ≤ n ≤ 2. The calculations have demonstrated that the dependences of the energy and electronic spectra in this compressed state are very smooth. The occupation of the Ca 4s band is in good agreement with the results of the pioneering calculations of compressed Ca (and a number of other metals), which were carried out by Gandel’man and his colleagues in the Wigner-Seitz spherical cell approximation. It has been shown that the performed analysis accurately reproduces the data obtained on the superconductivity in terms of the Bardeen-Cooper-Schrieffer theory if the 4s band is half-occupied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).

    Article  ADS  Google Scholar 

  2. S. Schubin and S. Wonsowsky, Proc. R. Soc. London, Ser. A 145, 159 (1934).

    Article  ADS  MATH  Google Scholar 

  3. M. F. Sarry, Usp. Fiz. Nauk 161(11), 47 (1991) [Sov. Phys.—Usp. 34 (11), 935 (1991)].

    Article  Google Scholar 

  4. J. R. Schrieffer, Theory of Superconductivity (W. A. Benjamin, New York, United States, 1964; Nauka, Moscow, 1965).

    MATH  Google Scholar 

  5. H. Shiba, Prog. Theor. Phys. 48, 2171 (1972).

    Article  ADS  Google Scholar 

  6. V. E. Fortov, A. M. Molodets, V. I. Postnov, D. V. Shakhrai, K. L. Kagan, E. G. Maksimov, A. V. Ivanov, and M. V. Magnitskaya, Pis’ma Zh. Eksp. Teor. Fiz. 79(7), 425 (2004) [JETP Lett. 79 (7), 346 (2004)].

    Google Scholar 

  7. R. Ahuja, O. Eriksson, J. M. Wills, and B. Johansson, Phys. Rev. Lett. 75, 3473 (1995).

    Article  ADS  Google Scholar 

  8. Proceedings of the International Workshop “New Models and Numerical Codes for Shock Wave Processes in Condensed Media,” St. Catherine’s College, Oxford, United Kingdom, September 15–19, 1997 (Oxford, 1997), p. 221.

  9. A. I. Voropinov, G. M. Gandel’man, and V. G. Podval’nyi, Usp. Fiz. Nauk 100(2), 193 (1970) [Sov. Phys.—Usp. 13 (1), 56 (1970)].

    Google Scholar 

  10. D. Pines, The Many-Body Problem (W. A. Benjamin New York, United States, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  11. C. Herring, in Magnetism, Ed. by G. Rado and H. Suhl (Academic, New York, United States, 1966), Vol. IV.

    Google Scholar 

  12. Y. Nagaoka, Phys. Rev. 147, 392 (1966).

    Article  ADS  Google Scholar 

  13. G. Kemeny, Phys. Lett. A 25, 307 (1967).

    Article  ADS  Google Scholar 

  14. S. V. Vonsovskii and M. S. Svirskii, Teor. Mat. Fiz. 5, 1957 (1992).

    Google Scholar 

  15. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Nauka, Moscow, 1965; Plenum, New York, United States, 1967).

    Google Scholar 

  16. V. L. Ginzburg and V. M. Fain, Zh. Eksp. Teor. Fiz. 39, 1323 (1960) [Sov. Phys. JETP 12, 923 (1960)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Sarry.

Additional information

Original Russian Text © A.N. Kasatkin, T.A. Olesnitskii, M.F. Sarry, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 3, pp. 417–426.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasatkin, A.N., Olesnitskii, T.A. & Sarry, M.F. First-principles calculation of the energy of compressed calcium. Phys. Solid State 53, 443–454 (2011). https://doi.org/10.1134/S1063783411030139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411030139

Keywords

Navigation