Skip to main content

Thermal conductivity of the diamond-paraffin wax composite

Abstract

The thermal conductivity of diamond-paraffin wax composites prepared by infiltration of a hydrocarbon binder with the thermal conductivity λ m = 0.2 W m−1 K−1 into a dense bed of diamond particles (λ f ∼ 1500 W m−1 K−1) with sizes of 400 and 180 μm has been investigated. The calculations using universally accepted models considering isolated inclusions in a matrix have demonstrated that the best agreement with the measured values of the thermal conductivity of the composite λ = 10–12 W m−1 K−1 is achieved with the use of the differential effective medium model, the Maxwell mean field scheme gives a very underestimated calculated value of λ, and the effective medium theory leads to a very overestimated value. An agreement between the calculation and the experiment can be provided by constructing thermal conductivity functions. The calculation of the thermal conductivity at the percolation threshold has shown that the experimental thermal conductivity of the composites is higher than this critical value. It has been established that, for the composites with closely packed diamond particles (the volume fraction is ∼0.63 for a monodisperse binder), the use of the isolated particle model (Hasselman-Johnson and differential effective medium models) for calculating the thermal conductivity is not quite correct, because the model does not take into account the percolation component of the thermal conductivity. In particular, this holds true for the calculation of the heat conductance of diamond-matrix interfaces in diamond-metal composites with a high thermal conductivity.

This is a preview of subscription content, access via your institution.

References

  1. K. Yoshida and H. Morigami, Microelectron. Reliab. 44, 303 (2004).

    Article  Google Scholar 

  2. T. Schubert, B. Trindade, T. Weibgarber, and B. Kieback, Mater. Sci. Eng., A 475, 39 (2008).

    Article  Google Scholar 

  3. L. Weber and R. Tavangar, Adv. Mater. Res. 59, 111 (2009).

    Article  Google Scholar 

  4. R. Tavangar, J. M. Molina, and L. Weber, Scr. Mater. 56, 357 (2007).

    Article  Google Scholar 

  5. P. W. Ruch, O. Beffort, S. Kleiner, L. Weber, and P. J. Uggowitzer, Compos. Sci. Technol. 66, 2677 (2006).

    Article  Google Scholar 

  6. N. V. Novikov and A. G. Gontar’, in Diamond in Electronic Technology, Ed. by V. B. Kvaskov (Energoatomizdat, Moscow, 1990), p. 66 [in Russian].

    Google Scholar 

  7. T. D. Ositinskaya and A. P. Podoba, Prom. Teplotekh. 3(1), 43 (1981).

    Google Scholar 

  8. A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, Materialovedenie, No. 5, 24 (2008).

  9. S. Rudtsch and H. Rogaß, in Proceedings of the Fourth Asian Thermophysical Properties Conference, Tokyo, Japan, September 5–8, 1995, Ed. by A. Nagashima (Japan Society of Thermophysical Properties, Tokyo, 1995), p. 559.

    Google Scholar 

  10. H. Inaba and P. Tu, Heat Mass Transfer 32, 307 (1997).

    Article  ADS  Google Scholar 

  11. D. P. H. Hasselman and L. F. Johnson, J. Compos. Mater. 21, 508 (1987).

    Article  Google Scholar 

  12. Z. Liu and D. D. L. Chung, J. Electron. Packag. 128, 319 (2006).

    Article  Google Scholar 

  13. G. N. Dul’nev and V. V. Novikov, Inzh.-Fiz. Zh. 41, 172 (1981) [J. Eng. Phys. Thermophys. 41 (1), 801 (1981)].

    Google Scholar 

  14. G. N. Dul’nev and V. V. Novikov, Processes of Transfer in Heterogeneous Media (Energoatomizdat, Leningrad, 1991), pp. 29, 37, 43 [in Russian].

    Google Scholar 

  15. Yu. M. Milekhin, S. A. Gusev, and S. G. Zhirov, Thermal Conductivity of Heterogeneous Materials (Arkhitektura-S, Moscow, 2006), p. 96 [in Russian].

    Google Scholar 

  16. G. N. Dul’nev and V. V. Novikov, Inzh.-Fiz. Zh. 36, 901 (1979) [J. Eng. Phys. Thermophys. 36 (5), 601 (1979)].

    Google Scholar 

  17. J.-K. Lee, Arch. Appl. Mech. 77, 453 (2007).

    Article  MATH  ADS  Google Scholar 

  18. O. Wiener, Abh. Math.-Phys. Kl. König. Sächs. Ges. Wiss. (Leipzig) 32, 509 (1912).

    Google Scholar 

  19. Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).

    Article  MATH  ADS  Google Scholar 

  20. J. K. Carson, S. J. Lovatt, D. J. Tanner, and A. C. Cleland, Int. J. Heat Mass Transfer 48, 2150 (2005).

    Article  MATH  Google Scholar 

  21. G. N. Dul’nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composite Materials (Energiya, Leningrad, 1974), p. 50 [in Russian].

    Google Scholar 

  22. K. Lichtenecker, Phys. Z. 30(22), 805 (1929).

    Google Scholar 

  23. K. Schulgasser, J. Math. Phys. 17, 278 (1976).

    Google Scholar 

  24. G. Grimvall and M. Soderberg, Int. J. Thermophys. 7, 207 (1986).

    Article  ADS  Google Scholar 

  25. S. V. Khor’kov, Pis’ma Zh. Tekh. Fiz. 31(10), 35 (2005) [Tech. Phys. Lett. 31 (5), 420 (2005)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Abyzov.

Additional information

Original Russian Text © A.M. Abyzov, S.V. Kidalov, F.M. Shakhov, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 1, pp. 48–51.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abyzov, A.M., Kidalov, S.V. & Shakhov, F.M. Thermal conductivity of the diamond-paraffin wax composite. Phys. Solid State 53, 48–52 (2011). https://doi.org/10.1134/S1063783411010033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411010033

Keywords

  • Percolation Threshold
  • Diamond Particle
  • Effective Medium Theory
  • Thermal Boundary Resistance
  • Experimental Thermal Conductivity