Abstract
The thermal conductivity of diamond-paraffin wax composites prepared by infiltration of a hydrocarbon binder with the thermal conductivity λ m = 0.2 W m−1 K−1 into a dense bed of diamond particles (λ f ∼ 1500 W m−1 K−1) with sizes of 400 and 180 μm has been investigated. The calculations using universally accepted models considering isolated inclusions in a matrix have demonstrated that the best agreement with the measured values of the thermal conductivity of the composite λ = 10–12 W m−1 K−1 is achieved with the use of the differential effective medium model, the Maxwell mean field scheme gives a very underestimated calculated value of λ, and the effective medium theory leads to a very overestimated value. An agreement between the calculation and the experiment can be provided by constructing thermal conductivity functions. The calculation of the thermal conductivity at the percolation threshold has shown that the experimental thermal conductivity of the composites is higher than this critical value. It has been established that, for the composites with closely packed diamond particles (the volume fraction is ∼0.63 for a monodisperse binder), the use of the isolated particle model (Hasselman-Johnson and differential effective medium models) for calculating the thermal conductivity is not quite correct, because the model does not take into account the percolation component of the thermal conductivity. In particular, this holds true for the calculation of the heat conductance of diamond-matrix interfaces in diamond-metal composites with a high thermal conductivity.
This is a preview of subscription content, access via your institution.
References
K. Yoshida and H. Morigami, Microelectron. Reliab. 44, 303 (2004).
T. Schubert, B. Trindade, T. Weibgarber, and B. Kieback, Mater. Sci. Eng., A 475, 39 (2008).
L. Weber and R. Tavangar, Adv. Mater. Res. 59, 111 (2009).
R. Tavangar, J. M. Molina, and L. Weber, Scr. Mater. 56, 357 (2007).
P. W. Ruch, O. Beffort, S. Kleiner, L. Weber, and P. J. Uggowitzer, Compos. Sci. Technol. 66, 2677 (2006).
N. V. Novikov and A. G. Gontar’, in Diamond in Electronic Technology, Ed. by V. B. Kvaskov (Energoatomizdat, Moscow, 1990), p. 66 [in Russian].
T. D. Ositinskaya and A. P. Podoba, Prom. Teplotekh. 3(1), 43 (1981).
A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, Materialovedenie, No. 5, 24 (2008).
S. Rudtsch and H. Rogaß, in Proceedings of the Fourth Asian Thermophysical Properties Conference, Tokyo, Japan, September 5–8, 1995, Ed. by A. Nagashima (Japan Society of Thermophysical Properties, Tokyo, 1995), p. 559.
H. Inaba and P. Tu, Heat Mass Transfer 32, 307 (1997).
D. P. H. Hasselman and L. F. Johnson, J. Compos. Mater. 21, 508 (1987).
Z. Liu and D. D. L. Chung, J. Electron. Packag. 128, 319 (2006).
G. N. Dul’nev and V. V. Novikov, Inzh.-Fiz. Zh. 41, 172 (1981) [J. Eng. Phys. Thermophys. 41 (1), 801 (1981)].
G. N. Dul’nev and V. V. Novikov, Processes of Transfer in Heterogeneous Media (Energoatomizdat, Leningrad, 1991), pp. 29, 37, 43 [in Russian].
Yu. M. Milekhin, S. A. Gusev, and S. G. Zhirov, Thermal Conductivity of Heterogeneous Materials (Arkhitektura-S, Moscow, 2006), p. 96 [in Russian].
G. N. Dul’nev and V. V. Novikov, Inzh.-Fiz. Zh. 36, 901 (1979) [J. Eng. Phys. Thermophys. 36 (5), 601 (1979)].
J.-K. Lee, Arch. Appl. Mech. 77, 453 (2007).
O. Wiener, Abh. Math.-Phys. Kl. König. Sächs. Ges. Wiss. (Leipzig) 32, 509 (1912).
Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).
J. K. Carson, S. J. Lovatt, D. J. Tanner, and A. C. Cleland, Int. J. Heat Mass Transfer 48, 2150 (2005).
G. N. Dul’nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composite Materials (Energiya, Leningrad, 1974), p. 50 [in Russian].
K. Lichtenecker, Phys. Z. 30(22), 805 (1929).
K. Schulgasser, J. Math. Phys. 17, 278 (1976).
G. Grimvall and M. Soderberg, Int. J. Thermophys. 7, 207 (1986).
S. V. Khor’kov, Pis’ma Zh. Tekh. Fiz. 31(10), 35 (2005) [Tech. Phys. Lett. 31 (5), 420 (2005)].
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.M. Abyzov, S.V. Kidalov, F.M. Shakhov, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 1, pp. 48–51.
Rights and permissions
About this article
Cite this article
Abyzov, A.M., Kidalov, S.V. & Shakhov, F.M. Thermal conductivity of the diamond-paraffin wax composite. Phys. Solid State 53, 48–52 (2011). https://doi.org/10.1134/S1063783411010033
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063783411010033
Keywords
- Percolation Threshold
- Diamond Particle
- Effective Medium Theory
- Thermal Boundary Resistance
- Experimental Thermal Conductivity