Skip to main content
Log in

Size effects upon phase transitions in vanadium oxide nanocomposites

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A phenomenological model has been proposed for the formation of the major thermal hysteresis loop of optical parameters upon the semiconductor-metal phase transition in vanadium oxide nanocomposites. It has been demonstrated that the effects associated with the influence of nanocrystallite sizes on the phase transition temperature in an individual nanocrystallite, which is determined by the width of the elementary hysteresis loop and the position of the phase equilibrium temperature on the temperature scale, manifest themselves in the form of pronounced features in the loop shape. In particular, the size effects for VO2 polycrystalline films are observed in the formation of a trapezoidal shape of the optical thermal hysteresis loop with a wide lower base, whereas these effects for nanocomposites based on porous glasses with VO2 nanocrystals are revealed in the form of the optical hysteresis loop with a narrow lower base (wide upper base). The proposed model also explains the symmetric shape of the major hysteresis loop for vanadium oxide nanocomposites based on opals. The size effects in opal nanocomposites with strictly fixed sizes of pores and, therefore, nanocrystallite sizes manifest themselves in the form of well-defined steps in the heating and cooling branches of the major hysteresis loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974; Nauka, Moscow, 1979).

    Google Scholar 

  2. W. Bruckner, H. Opperman, W. Reichelt, E. I. Terukov, and F. A. Tschudnovskii, Vanadiumdioxide (Akademie, Berlin, 1983), p. 252.

    Google Scholar 

  3. A. L. Roĭtburd, Usp. Fiz. Nauk 113, 69 (1974) [Sov. Phys.—Usp. 17, 326 (1974)].

    Google Scholar 

  4. G. V. Kurdyumov, V. S. Semenov, and A. A. Faktorovich, Physics of Metals and Alloys (Naukova Dumka, Kiev, 1986), p. 629 [in Russian].

    Google Scholar 

  5. V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskiĭ, and F. Silva-Andrade, Zh. Tekh. Fiz. 72(9), 67 (2002) [Tech. Phys. 47 (9), 1134 (2002)].

    Google Scholar 

  6. O. P. Vinogradova, I. E. Obyknovennaya, A. I. Sidorov, V. A. Klimov, E. B. Shadrin, S. D. Khanin, T. A. Khrushcheva, Fiz. Tverd. Tela (St. Petersburg) 50(4), 734 (2008) [Phys. Solid State 50 (4), 768 (2008)].

    Google Scholar 

  7. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Fizmatlit, Moscow, 1976; Butterworth-Heinemann, Oxford, 2000).

    Google Scholar 

  8. M. Motevalli, D. Shah, S. A. A. Shah, and A. C. Sullivan, Polyhedron 15(14), 2387 (1996).

    Article  Google Scholar 

  9. V. G. Golubev, V. Y. Daydov, N. F. Karpenko, D. A. Kurdyukov, A. V. Medvedev, E. B. Shadrin, and A. V. Scherbakov, Appl. Phys. Lett. 79(14), 2127 (2001).

    Article  ADS  Google Scholar 

  10. E. B. Shadrin, D. A. Kurdyukov, A. V. Ilinskiy, and V. G. Golubev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 43(1), 110 (2009) [Semiconductors 43 (1), 102 (2009)].

    Google Scholar 

  11. A. V. Il’inskiĭ, S. D. Khanin, and E. B. Shadrin, Izv. Ross. Gos. Ped. Univ. im. A. I. Gertsena, No. 11, 61 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Shadrin.

Additional information

Original Russian Text © E.B. Shadrin, A. V. Il’inskiĭ, A.I. Sidorov, S.D. Khanin, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 11, pp. 2269–2276.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shadrin, E.B., Il’inskiĭ, A.V., Sidorov, A.I. et al. Size effects upon phase transitions in vanadium oxide nanocomposites. Phys. Solid State 52, 2426–2433 (2010). https://doi.org/10.1134/S1063783410110338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410110338

Keywords

Navigation