Skip to main content
Log in

Acoustic precursor of unstable plastic deformation in the aluminum-magnesium alloy AMg6

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A relation between the acoustic signal and the dynamics of the first deformation bands at the initial stage of development of the plastic deformation jump in the artificially aged AMg6 alloy has been established using the high-speed video recording and simultaneous measurement of the acoustic emission signal. It has been demonstrated that a sharp increase in the potential of a piezoelectric transducer in the first approximately 10 ms of the development of the deformation jump is the most informative characteristic of the acoustic signal. The mechanisms of propagation of deformation bands and generation of acoustic signals, as well as the possible use of acoustic precursors of plastic deformation jumps, have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Bell, Experimental Foundations of Solid Mechanics (Springer, Berlin, 1973; Nauka, Moscow, 1984), Part 2.

    Google Scholar 

  2. A. Portevin and F. Le Chatelier, Trans. Am. Soc. Steel Treat. 5, 457 (1924).

    Google Scholar 

  3. M. V. Markushev and M. Yu. Murashkin, Fiz. Met. Metalloved. 91(5), 97 (2001) [Phys. Met. Metallogr. 91 (5), 522 (2001)].

    Google Scholar 

  4. M. V. Markushev and M. Yu. Murashkin, Fiz. Met. Metalloved. 92(1), 90 (2001) [Phys. Met. Metallogr. 92 (1), 84 (2001)].

    Google Scholar 

  5. A. A. Shibkov, A. A. Mazilkin, S. G. Protasova, D. V. Mikhlik, A. E. Zolotov, M. A. Zheltov, and A. V. Shuklinov, Deform. Razrushenie Mater., No. 5, 24 (2008).

  6. A. A. Shibkov, A. E. Zolotov, D. V. Mikhlik, M. A. Zheltov, A. V. Shuklinov, V. A. Averkov, and A. A. Denisov, Deform. Razrushenie Mater., No. 8, 23 (2009).

  7. A. A. Shibkov and A. E. Zolotov, Kristallografiya (2010) (in press) [Crystallogr. Rep. (2010) (in press)].

  8. A. A. Shibkov, M. A. Lebedkin, M. A. Zheltov, V. V. Skvortsov, R. Yu. Kol’tsov, and A. V. Shuklinov, Zavod. Lab. 71(7), 20 (2005).

    Google Scholar 

  9. A. A. Shibkov, R. Yu. Kol’tsov, M. A. Zheltov, A. V. Shuklinov, and M. A. Lebedkin, Izv. Akad. Nauk, Ser. Fiz. 70 (9), 1372 (2006).

    Google Scholar 

  10. A. A. Shibkov and A. E. Zolotov, Pis’ma Zh. Éksp. Teor. Fiz. 90(5), 412 (2009) [JETP Lett. 90 (5), 370 (2009)].

    Google Scholar 

  11. M. M. Krishtal, Izv. Akad. Nauk, Ser. Fiz. 68(10), 1391 (2004).

    Google Scholar 

  12. V. A. Plotnikov and D. V. Kokhanenko, Fiz. Met. Metalloved. 97(4), 34 (2004) [Phys. Met. Metallogr. 97 (4), 358 (2004)].

    Google Scholar 

  13. I. A. Baron and M. Rosen, Acta Metall. 30(9), 655 (1982).

    Google Scholar 

  14. Yu. P. Gololobov and I. N. Salivanov, Fiz. Tverd. Tela (Leningrad) 33(1), 298 (1991) [Sov. Phys. Solid State 33 (1), 172 (1991)].

    Google Scholar 

  15. S. N. Zadumkin, Kh. B. Khokonov, and Kh. B. Shokarov, Zh. Éksp. Teor. Fiz. 68(4), 1315 (1975) [Sov. Phys. JETP 41 (4), 653 (1975)].

    Google Scholar 

  16. É. L. Lube, Kh. S. Bagdasarov, E. A. Fedorov, A. T. Zlat- kin, and E. V. Antonov, Kristallografiya 27(3), 584 (1982) [Sov. Phys. Crystallogr. 27 (3), 353 (1982)].

    Google Scholar 

  17. S. Sreekala and G. Ananthakrishna, Phys. Rev. Lett. 90(13), 13550 (2003).

    Article  Google Scholar 

  18. M. M. Krishtal and D. L. Merson, Fiz. Met. Metalloved. 81(1), 156 (1996) [Phys. Met. Metallogr. 81 (1), 104 (1996)].

    Google Scholar 

  19. M. M. Krishtal, A. K. Khrustalev, A. A. Razuvaev, and I. S. Demin, Deform. Razrushenie Mater., No. 1, 28 (2008).

  20. U. F. Kocks, Prog. Mater. Sci. 19, 185 (1981).

    Google Scholar 

  21. Y. Estrin, Solid State Phenom. 3–4, 417 (1988).

    Article  Google Scholar 

  22. Y. Estrin and L. P. Kubin, in Continuum Models for Materials with Microstructure, Ed. by H.-B. Muhlhaus (Wiley, New York, 1995), p. 395.

    Google Scholar 

  23. K. Chihab, Y. Estrin, L. P. Kubin, and J. Vergnol, Scr. Metall. 21, 203 (1987).

    Article  Google Scholar 

  24. V. Jeanclaude and C. Fressengeas, Scr. Metall. 29, 1177 (1993).

    Article  Google Scholar 

  25. P. Hahner, Scr. Metall. Mater. 29(9), 1171 (1993).

    Article  Google Scholar 

  26. P. Hahner, Mater. Sci. Eng., A 164, 23 (1993).

    Article  Google Scholar 

  27. P. Penning, Acta Metall. 20, 1169 (1972).

    Article  Google Scholar 

  28. E. C. Aifantis, J. Eng. Mater. Technol. 106(4), 326 (1984).

    Article  Google Scholar 

  29. E. C. Aifantis, Int. J. Eng. Sci. 30(10), 1279 (1992).

    Article  MATH  Google Scholar 

  30. H. Neuhauser, in Dislocation in Solids, Ed. by F. R. N. Nabarro (North Holland, Amsterdam, 1983), Vol. 6, p. 319.

    Google Scholar 

  31. M. A. Lebyodkin and L. R. Dunin-Barkowskiĭ, Zh. Éksp. Teor. Fiz. 113(5), 1816 (1998) [JETP 86 (5), 993 (1998)].

    Google Scholar 

  32. H. Neuhauser and O. B. Arkan, Phys. Status Solidi A 100(2), 441 (1987).

    Article  ADS  Google Scholar 

  33. O. B. Arkan and H. Neuhauser, Phys. Status Solidi A 99(2), 385 (1987).

    Article  ADS  Google Scholar 

  34. A. Neuhäuser and A. Hampel, Scr. Metall. Mater. 29, 1151 (1993).

    Article  Google Scholar 

  35. P. W. Bridgman, Studies in Large Plastic Flow and Fracture (McGraw-Hill, New York, 1952).

    MATH  Google Scholar 

  36. P. Hahner, A. Ziegenbein, E. Rizzi, and H. Neuhauser, Phys. Rev. B: Condens. Matter 65(13), 134109 (2002).

    ADS  Google Scholar 

  37. N. A. Fleck and J. W. Hutchinson, Adv. Appl. Mech. 33, 295 (1997).

    Article  Google Scholar 

  38. R. K. Abu Al-Rub and G. Z. Voyiadjis, Int. J. Plast. 22, 654 (2006).

    Article  MATH  Google Scholar 

  39. G. I. Taylor, J. Inst. Met. 62, 307 (1938).

    Google Scholar 

  40. U. F. Kocks, J. Eng. Mater. Technol. 98, 76 (1976).

    Article  Google Scholar 

  41. H. Gao, Y. Huang, W. D. Nix, and J. W. Hutchinson, J. Mech. Phys. Solids 47, 1239 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. D. A. Hughes, Acta Metall. Mater. 41(5), 1421 (1993).

    Article  Google Scholar 

  43. Physical Metallurgy of Aluminum and Its Alloys: A Handbook, Ed. by A. I. Belyaev, O. S. Bochvar, and N. N. Buĭnov (Metallurgiya, Moscow, 1983) [in Russian].

    Google Scholar 

  44. N. A. Koneva and É. V. Kozlov, in Advanced Materials, Ed. by D. L. Merson (Tambov State University, Tambov, Russia, 2006), p. 267 [in Russian].

    Google Scholar 

  45. A. A. Shibkov, A. E. Zolotov, D. V. Mikhlik, M. A. Zheltov, and A. V. Shuklinov, Deform. Razrushenie Mater., No. 9, 22 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shibkov.

Additional information

Original Russian Text ©. A.A. Shibkov, A.E. Zolotov, M.A. Zheltov, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 11, pp. 2223–2231.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibkov, A.A., Zolotov, A.E. & Zheltov, M.A. Acoustic precursor of unstable plastic deformation in the aluminum-magnesium alloy AMg6. Phys. Solid State 52, 2376–2384 (2010). https://doi.org/10.1134/S1063783410110259

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410110259

Keywords

Navigation