Skip to main content
Log in

Resistance to deformation and fracture of aluminum AD1 under shock-wave loading at temperatures of 20 and 600°C

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of measurements of the dynamic elastic limit and spall strength under shock-wave loading of aluminum samples AD1 of thicknesses between 0.5 and 10.0 mm at room temperature and at temperature increased up to 600°C are presented. The anomalous thermal hardening of aluminum under high strain rate has been confirmed. An analysis of the decay of precursors at temperatures of 20 and 600°C has shown that the change in the main mechanism of drag of dislocations occurs at a strain rate equal approximately to 5 × 103 s−1, which agrees with the results of measurements by the Hopkinson split bar method. The results of measurements of the spall strength in a wide range of strain rates add the previously obtained data and agree with them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kumar and R. G. Kumble, J. Appl. Phys. 40(9), 3475 (1969).

    Article  ADS  Google Scholar 

  2. M. A. Meyers, D. J. Benson, O. Vohringer, B. K. Kad, Q. Xue, and H.-H. Fu, Mater. Sci. Eng., A 322, 194 (2002).

    Article  Google Scholar 

  3. V. I. Al’shitz and V. L. Indenbom, Usp. Fiz. Nauk 115(1), 3 (1975) [Sov. Phys.—Usp. 18 (1), 1 (1975)].

    Google Scholar 

  4. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1967).

    Google Scholar 

  5. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  6. G. I. Kanel and S. V. Razorenov, Fiz. Tverd. Tela (St. Petersburg) 43(5), 839 (2001) [Phys. Solid State 43 (5), 871 (2001)].

    Google Scholar 

  7. G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, J. Appl. Phys. 90(1), 136 (2001).

    Article  ADS  Google Scholar 

  8. G. I. Kanel, S. V. Razorenov, A. A. Bogatch, A. V. Utkin, V. E. Fortov, and D. E. Grady, J. Appl. Phys. 79(11), 8310 (1996).

    Article  ADS  Google Scholar 

  9. S. V. Razorenov, G. I. Kanel’, and V. E. Fortov, Fiz. Met. Metalloved. 95 (1), 91 (2003) [Phys. Met. Metallogr. 95 (1), 86 (2003)].

    Google Scholar 

  10. G. V. Garkushin, S. V. Razorenov, and G. I. Kanel, Fiz. Tverd. Tela (St. Petersburg) 50(5), 805 (2008) [Phys. Solid State 50 (5), 839 (2008)].

    Google Scholar 

  11. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).

    Article  ADS  Google Scholar 

  12. J. M. Winey, B. M. LaLone, P. B. Trivedi, and Y. M. Gupta, J. Appl. Phys. 106, 073508 (2009).

    Article  ADS  Google Scholar 

  13. T. E. Arvidsson, Y. M. Gupta, and G. E. Duvall, J. Appl. Phys. 46, 4474 (1975).

    Article  ADS  Google Scholar 

  14. K. Sakino, J. Phys. IV 10(9), 57 (2000).

    Article  Google Scholar 

  15. J. L. Tallon and A. Wolfeden, J. Phys. Chem. Solids 40, 831 (1979).

    Article  ADS  Google Scholar 

  16. M. W. Guinan and D. J. Steinberg, J. Phys. Chem. Solids 35, 1501 (1974).

    Article  ADS  Google Scholar 

  17. G. I. Kanel’, Prikl. Mekh. Tekh. Fiz. 42(2), 194 (2001).

    Google Scholar 

  18. T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Springer, New York, 2003).

    Google Scholar 

  19. K. Baumung, H. Bluhm, G. I. Kanel, G. Müller, S. V. Razorenov, J. Singer, and A. V. Utkin, Int. J. Impact Eng. 25 (7), 631 (2001).

    Article  Google Scholar 

  20. A. V. Utkin, Prikl. Mekh. Tekh. Fiz. 38(6), 157 (1997).

    MATH  Google Scholar 

  21. P. B. Trivedi, J. R. Asay, Y. M. Gupta, and D. P. Field, J. Appl. Phys. 102, 083513 (2007).

    Article  ADS  Google Scholar 

  22. G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Garkushin.

Additional information

Original Russian Text © G.V. Garkushin, G.I. Kanel’, S.V. Razorenov, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 11, pp. 2216–2222.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garkushin, G.V., Kanel’, G.I. & Razorenov, S.V. Resistance to deformation and fracture of aluminum AD1 under shock-wave loading at temperatures of 20 and 600°C. Phys. Solid State 52, 2369–2375 (2010). https://doi.org/10.1134/S1063783410110247

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410110247

Keywords

Navigation