Skip to main content
Log in

Dynamics of interacting qubits in a strong alternating electromagnetic field

  • Proceedings of the XIV International Symposium “Nanophysics and Nanoelectronics-2010” (Nizhni Novgorod, Russia, March 15–19, 2010) Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The populations of energy levels of interacting qubits have been studied as functions of the field amplitude and other control parameters for a constant frequency of the external electromagnetic field. It has been found that the qubit coupling constant strongly affects the quantum-coherent Landau-Zener transitions between the qubit states and the formation of an interference pattern in level populations, depending on the field parameters. It has been demonstrated that it is possible to determine the qubit coupling constant by Landau-Zener interferometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, and P. Hakonen, Phys. Rev. Lett. 96, 187002 (2006).

    Article  ADS  Google Scholar 

  2. D. Berns, M. Rudner, S. Valenzuela, K. Berggren, W. Oliver, L. Levitov, and T. Orland, Nature (London) 455, 51 (2008).

    Article  ADS  Google Scholar 

  3. W. Oliver and S. Valenzuela, ArXiv: condmat/0906.0185v1 (2009).

  4. L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).

    MATH  Google Scholar 

  5. C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932).

    Article  MATH  ADS  Google Scholar 

  6. S. N. Shevchenko, S. Ashhab, and F. Nori, ArXiv:cond-mat/0911.1917v1 (2009).

  7. S. Ashhab, J. R. Johansson, A. M. Zagoskin, and F. Nori, Phys. Rev. A: At., Mol., Opt. Phys. 75, 063414 (2007).

    ADS  Google Scholar 

  8. M. Grifoni and P. Hänngi, Phys. Rep. 304, 229 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  9. J. H. Shirley, Phys. Rev. [Sect.] B 138, 979 (1965).

    ADS  Google Scholar 

  10. Ya. B. Zel’dovich, Usp. Fiz. Nauk 110, 139 (1973) [Sov. Phys.—Usp. 16, 427 (1973)].

    Google Scholar 

  11. M. Grajcar, A. Izmalkov, S. H. W. van der Ploeg, S. Linzen, E. Il’ichev, Th. Wagner, U. Hübner, H.-G. Meyer, A. M. van den Brink, S. Uchaikin, and A. M. Zagoskin, Phys. Rev. B: Condens. Matter 72, 020503 (2005).

    ADS  Google Scholar 

  12. M. J. Storcz and F. K. Wilhwlm, Phys. Rev. A: At., Mol., Opt. Phys. 67, 042319 (2003).

    ADS  Google Scholar 

  13. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1974; Gordon and Breach, Delhi, 1961).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Satanin.

Additional information

Original Russian Text © M.V. Denisenko, A.M. Satanin, S. Ashhab, F. Nori, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 11, pp. 2138–2142.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denisenko, M.V., Satanin, A.M., Ashhab, S. et al. Dynamics of interacting qubits in a strong alternating electromagnetic field. Phys. Solid State 52, 2281–2286 (2010). https://doi.org/10.1134/S1063783410110120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410110120

Keywords

Navigation