Skip to main content
Log in

Relaxation dynamics of superconducting Josephson cubits in a strong alternating field

  • Proceedings of the XIV International Symposium “Nanophysics and Nanoelectronics-2010” (Nizhni Novgorod, Russia, March 15–19, 2010) Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The quantum trajectory method has been applied to study the influence of noise on the level populations of a cubit in separate realizations of the experiment and to follow the transition to the averaged dynamics obtained by multiple measurements of the cubit state. As an example of applying the developed method, the influence of noise on the interference pattern appearing in amplitude spectroscopy due to the Landau-Zener transitions in an alternating field has been analyzed. The influence of the number of repeated measurements and fluctuations in the phase of the exciting pulse during formation of the response of a cubit to the external field has been studied, which made it possible to interpret recent experiments from the viewpoint of single realizations and averaged dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).

    Article  ADS  Google Scholar 

  2. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2001; Mir, Moscow, 2006).

    Google Scholar 

  3. L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).

    MATH  Google Scholar 

  4. C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932).

    Article  MATH  ADS  Google Scholar 

  5. S. Yoakum, L. Sirko, and P. M. Koch, Phys. Rev. Lett. 69, 1919 (1992); W. van de Water, S. Yoakum, T. van Leeuwen, B. E. Sauer, L. Moorman, E. J. Galvez, D. R. Mariani, and P. M. Koch, Phys. Rev. A: At., Mol., Opt. Phys. 42, 572 (1990).

    Article  ADS  Google Scholar 

  6. A. V. Shytov, D. A. Ivanov, and M. V. Feigel’man, Eur. Phys. J. B 36, 263 (2003).

    Article  ADS  Google Scholar 

  7. M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, and P. Hakonen, Phys. Rev. Lett. 96, 187002 (2006).

    Article  ADS  Google Scholar 

  8. W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, and T. P. Orlando, Science (Washington) 310, 1653 (2005).

    Article  ADS  Google Scholar 

  9. D. M. Berns, W. D. Oliver, S. O. Valenzuela, A. V. Shytov, K. K. Berggren, L. S. Levitov, and T. P. Orlando, Phys. Rev. Lett. 97, 150502 (2006).

    Article  ADS  Google Scholar 

  10. D. M. Berns, M. S. Rudner, S. O. Valenzuela, K. K. Berggren, W. D. Oliver, L. S. Levitov, and T. P. Orlando, Nature (London) 455, 51 (2008).

    Article  ADS  Google Scholar 

  11. M. S. Rudner, A. V. Shutov, L. S. Levitov, D. M. Burns, W. D. Olivier, S. O. Valenzuela, and T. P. Orlando, Phys. Rev. Lett. 101, 190502 (2008).

    Article  ADS  Google Scholar 

  12. C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R.N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, Science (Washington) 290, 773 (2000).

    Article  ADS  Google Scholar 

  13. A. Izmalkov, M. Grajcar, E. Il’ichev, Th. Wagner, H.-G. Meyer, A. Yu. Smirnov, M. H. S. Amin, A. M. van den Brink, and A. M. Zagoskin, Phys. Rev. Lett. 93, 037003 (2004).

    Article  ADS  Google Scholar 

  14. Yu. Makhlin, G. Schon, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Article  ADS  Google Scholar 

  15. J. Q. You and F. Nori, Phys. Today 58(11), 42 (2005).

    Article  Google Scholar 

  16. G. Wendin and V. S. Shumeiko, in Handbook of Theoretical and Computational Nanotechnology, Ed. by M. Rieth and W. Schommers (American Scientific, New York, 2006), Vol. 3.

    Google Scholar 

  17. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997; Fizmatlit, Moscow, 2003).

    Google Scholar 

  18. S. Ashhab, J. R. Johansson, A. M. Zagoskin, and F. Nori, Phys. Rev. A: At., Mol., Opt. Phys. 75, 063414 (2007).

    ADS  Google Scholar 

  19. G. S. Agarwal and W. Harshawardhan, Phys. Rev. A: At., Mol., Opt. Phys. 50, R4465 (1994).

    ADS  Google Scholar 

  20. M. B. Garraway and N. V. Vitanov, Phys. Rev. A: At., Mol., Opt. Phys. 55(6), 4418 (1997).

    ADS  Google Scholar 

  21. K. Saito, M. Wubs, S. Kohler, Y. Kayanuma, and P. Hänggi, Phys. Rev. B: Condens. Matter 75, 214308 (2007).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gel’man.

Additional information

Original Russian Text © A.I. Gel’man, A.M. Satanin, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 11, pp. 2094–2099.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gel’man, A.I., Satanin, A.M. Relaxation dynamics of superconducting Josephson cubits in a strong alternating field. Phys. Solid State 52, 2234–2240 (2010). https://doi.org/10.1134/S106378341011003X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341011003X

Keywords

Navigation