Skip to main content
Log in

Change in the order parameter symmetry in the vicinity of the surface of a superconductor with s ± pairing

  • Proceedings of the XIV International Symposium “Nanophysics and Nanoelectronics-2010” (Nizhni Novgorod, Russia, March 15–19, 2010) Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The behavior of the order parameter and the local density of states near the impenetrable surface have been theoretically studied in a two-band superconductor in which the gapless state with s ± symmetry of the superconducting order parameter is realized. It has been shown that, over a wide range of the parameters, the spatial behavior of the order parameter on the surface is not reduced to a standard suppression. If the probability of the interband reflection on the surface is of the order of or higher than the probability of the intraband reflection, it can be energetically more favorable to change the symmetry of the superconducting state near the surface from s ± symmetry to common s symmetry. The region of existence of the surface s-superconductivity is very sensitive to relative values of the interband and intraband pairing potentials. It has also been shown that the self-consistent calculation (i.e., with allowance made for the dissimilarity of the near-surface order parameter from the bulk value) can lead to a qualitatively different behavior of the near-surface local density of states as compared to the results of the non-self-consistent calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Brüning, C. Krellner, M. Baenitz, A. Jesche, F. Steglich, and C. Geibel, Phys. Rev. Lett. 101, 117206 (2008).

    Article  ADS  Google Scholar 

  2. J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Grenn, G. F. Chen, G. Li, Z. C. Li, J. L. Luo, N. L. Wang, and P. Dai, Nat. Mater. 7, 953 (2008).

    Article  ADS  Google Scholar 

  3. L. Pourovskii, V. Vildosola, S. Biermann, and A. Georges, Europhys. Lett. 84, 37006 (2008).

    Article  ADS  Google Scholar 

  4. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552 (1959).

    Article  MATH  ADS  Google Scholar 

  5. V. A. Moskalenko, Fiz. Met. Metalloved. 8, 503 (1959).

    Google Scholar 

  6. I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  7. K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Phys. Rev. Lett. 101, 087004 (2008).

    Article  ADS  Google Scholar 

  8. A. A. Golubov and I. I. Mazin, Phys. Rev. B: Condens. Matter 55, 15146 (1997).

    ADS  Google Scholar 

  9. D. F. Agterberg, V. Barzykin, and L. P. Gor’kov, Phys. Rev. B: Condens. Matter 60, 14868 (1999).

    ADS  Google Scholar 

  10. V. Cvetković and Z. Tešanović, Europhys. Lett. 85, 37002 (2009).

    Article  ADS  Google Scholar 

  11. S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, New J. Phys. 11, 025016 (2009).

    Article  ADS  Google Scholar 

  12. A. V. Chubukov, D. Efremov, and I. Eremin, Phys. Rev. B: Condens. Matter 78, 134512 (2008).

    ADS  Google Scholar 

  13. F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D.-H. Lee, Phys. Rev. Lett. 102, 047005 (2009).

    Article  ADS  Google Scholar 

  14. V. Cvetković and Z. Tešanović, Phys. Rev. B: Condens. Matter 80, 024512 (2009).

    ADS  Google Scholar 

  15. P. Ghaemi, F. Wang, and A. Vishwanath, Phys. Rev. Lett. 102, 157002 (2009).

    Article  ADS  Google Scholar 

  16. Y. Nagai and N. Hayashi, Phys. Rev. B: Condens. Matter 79, 224508 (2009).

    ADS  Google Scholar 

  17. S. Onari and Y. Tanaka, Phys. Rev. B: Condens. Matter 79, 174526 (2009).

    ADS  Google Scholar 

  18. Y. Nagai, N. Hayashi, and M. Macgida, ArXiv: 0910.4040.

  19. H. Y. Choi and Y. Bang, ArXiv: 0807.4604.

  20. J. Linder and A. Sudbo, Phys. Rev. B: Condens. Matter 79, 020501(R) (2009).

    ADS  Google Scholar 

  21. A. A. Golubov, A. Brinkman, Y. Tanaka, I. I. Mazin, and O. V. Dolgov, Phys. Rev. Lett. 103, 077003 (2009).

    Article  ADS  Google Scholar 

  22. I. B. Sperstad, J. Linder, and A. Sudbo, Phys. Rev. B: Condens. Matter 80, 144507 (2009).

    ADS  Google Scholar 

  23. X. Y. Feng and T. K. Ng, Phys. Rev. B: Condens. Matter 79, 184503 (2009).

    ADS  Google Scholar 

  24. W. F. Tsai, D. X. Yao, B. A. Bernevig, and J. P. Hu, Phys. Rev. B: Condens. Matter 80, 012511 (2009).

    ADS  Google Scholar 

  25. M. Eschrig, Phys. Rev. B: Condens. Matter 61, 9061 (2000).

    ADS  Google Scholar 

  26. M. Eschrig, Phys. Rev. B: Condens. Matter 80, 134511 (2009).

    ADS  Google Scholar 

  27. R. Khasanov, M. Bendele, A. Amato, K. Conder, H. Keller, H.-H. Klauss, H. Luetkens, and E. Pomjakushina, ArXiv:0912.0471.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bobkov.

Additional information

Original Russian Text © A.M. Bobkov, I.V. Bobkova, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 11, pp. 2088–2093.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobkov, A.M., Bobkova, I.V. Change in the order parameter symmetry in the vicinity of the surface of a superconductor with s ± pairing. Phys. Solid State 52, 2228–2233 (2010). https://doi.org/10.1134/S1063783410110028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410110028

Keywords

Navigation