Skip to main content
Log in

Hopping diffusion of helium isotopes from samples of lunar soil

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on a detailed study of diffusion of helium isotopes from a sample of lunar soil (weight, 3.3 mg; bulk grain size, <74 μm; sampling depth, 118 cm in a 1.6-m-long core of lunar soil brought from the Moon by the Soviet automatic station Luna-24). The studies have been performed using step heating in the temperature range 300–1000°C in combination with a mass spectrometric isotope analysis of helium extracted at each temperature step. It has been demonstrated that the diffusion does not obey Fick’s law, which should be attributed to a large number of radiation damages in crystals of lunar soil minerals and can be described in terms of the formalism accepted for jump diffusion. The diffusion activation energy for both helium isotopes (4He, 3He) has been found to be identical and equal to 0.5 eV, and the frequency factors amount to 0.51 and 0.59 s−1, respectively. The random errors σ in the determination of these parameters are approximately equal to 5%. The lunar soil delivered to the Earth loses helium during the storage. At the beginning of the storage at room temperature, one gram of the lunar material under investigation loses approximately 3 × 109 helium atoms every second. It has been revealed that the jump diffusion of helium exhibits a strong isotopic effect: the light isotope 3He escapes at substantially higher rates. In order to prevent helium losses accompanied by isotope fractionation, the brought lunar soil should be stored at a low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dzh. Dzh. Vasserburg, D. A. Papanastasiu, M. T. Mak Kallok, R. F. Dimok, D. Dzh. De Paolo, A. A. Chodos, and A. L. Olbi, in The Lunar Regolith from the Crisis Sea, Ed. by V. L. Barsukov (Nauka, Moscow, 1980), p. 219 [in Russian].

    Google Scholar 

  2. É. K. Gerling, The Present Stage of the Argon Method for Age Determination and Its Application in Geology (Academy of Sciences of the Soviet Union, Leningrad, 1961) [in Russian].

    Google Scholar 

  3. V. A. Stepanov, Zh. Tekh. Fiz. 68(8), 67 (1998) [Tech. Phys. 43 (8), 938 (1998)].

    Google Scholar 

  4. I. M. Morozova and G. Sh. Ashkinadze, Migration of Rare-Gas Atoms in Minerals (Nauka, Leningrad, 1971) [in Russian].

    Google Scholar 

  5. L. G. Gorbich and A. N. Varaksin, Fiz. Tverd. Tela (St. Petersburg) 41(3), 431 (1999) [Phys. Solid State 41 (3), 386 (1999)].

    Google Scholar 

  6. V. G. Chudinov, Zh. Tekh. Fiz. 70(7), 133 (2000) [Tech. Phys. 45 (7), 945 (2000)].

    Google Scholar 

  7. O. V. Klyavin, B. A. Mamyrin, L. V. Khabarin, and Yu.M. Chernov, Fiz. Tverd. Tela (St. Petersburg) 47(5), 837 (2005) [Phys. Solid State 47 (5), 863 (2005)].

    Google Scholar 

  8. A. R. Zhiganov and A. Ya. Kupryazhkin, Zh. Tekh. Fiz. 75(8), 63 (2005) [Tech. Phys. 50 (8), 1026 (2005)].

    Google Scholar 

  9. V. P. Chakin, S. V. Belozerov, and O. A. Posevin, Fiz. Met. Metalloved. 104(3), 270 (2007) [Phys. Met. Metallogr. 104 (3), 257 (2007)].

    Google Scholar 

  10. M. A. Kovalenko, A. Ya. Kupryazhkin, and V. V. Ivanov, Zh. Tekh. Fiz. 80(1), 138 (2010) [Tech. Phys. 55 (1), 137 (2010)].

    Google Scholar 

  11. V. S. Murzin, Introduction to Cosmic-Ray Physics (Moscow State University, Moscow, 1988) [in Russian].

    Google Scholar 

  12. G. S. Anufriev and É. M. Galimov, Dokl. Akad. Nauk 420(6), 805 (2008) [Dokl. Earth Sci. 421 (5), 804 (2008)].

    Google Scholar 

  13. Ya. I. Frenkel’, Introduction to the Theory of Metals (Nauka, Moscow, 1950) [in Russian].

    Google Scholar 

  14. J. Manning, Diffusion Kinetics for Atoms in Crystals (Princeton University Press, Princeton, NJ, United States, 1968; Mir, Moscow, 1971).

    Google Scholar 

  15. G. S. Anufriev and B. S. Boltenkov, Dokl. Akad. Nauk 404(6), 802 (2005) [Dokl. Earth Sci. 405 (8), 1205 (2005)].

    Google Scholar 

  16. A. I. Brodskiĭ, Chemistry of Isotopes (Academy of Sciences of the Soviet Union, Moscow, 1957) [in Russian].

    Google Scholar 

  17. P. Eberhardt, J. Geiss, H. Graf, N. Grögler, U. Krähenbühl, H. Schwaller, J. Schwarzmüller, and A. Stettler, in Proceedings of the Apollo Eleven Lunar Scientific Conference, Houston, TX, United States, 1970 (Houston, 1970), Vol. 2, p. 1037.

    ADS  Google Scholar 

  18. K. Gallagher, R. Brown, and C. Johnson, Annu. Rev. Earth Planet Sci. 26(1), 519 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Anufriev.

Additional information

Original Russian Text © G.S. Anufriev, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 10, pp. 1921–1924.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anufriev, G.S. Hopping diffusion of helium isotopes from samples of lunar soil. Phys. Solid State 52, 2058–2062 (2010). https://doi.org/10.1134/S1063783410100082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410100082

Keywords

Navigation