Skip to main content
Log in

Pulsed and monochromatic excitation of semiconductor quantum wells under the conditions of quantum confinement

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The reflectance and absorbance of light by quantum wells whose width is comparable to the light wavelength have been calculated. The difference in the refractive indices of the materials of the quantum well and the barriers has been taken into account. Pulsed irradiation with an arbitrary shape of the exciting pulse has been considered, and the existence of two closely spaced discrete excitation levels has been assumed. This pair of levels can correspond to two magnetopolaron states in a quantizing magnetic field directed perpendicular to the plane of the quantum well. The ratio between the magnitudes of nonradiative and radiative dampings of electronic excitations is arbitrary. The final results have been obtained without invoking the approximation in which the Coulomb interaction of electrons and holes is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Stolz, Time-Resolved Light Scattering from Excitons, in Springer Tracts in Modern Physics (Springer, Berlin, 1994).

    Google Scholar 

  2. J. Stah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin, 1996).

    Google Scholar 

  3. H. Hang and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).

    Google Scholar 

  4. L. E. Vorob’ev, E. L. Ivchenko, D. A. Firsov, and V. A. Shalygin, Optical Properties of Nanostructures (Nauka, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  5. D. A. Contreras-Solorio, S. T. Pavlov, L. I. Korovin, and I. G. Lang, Phys. Rev. B: Condens. Matter 62, 16815 (2000); cond-mat/0002229.

    ADS  Google Scholar 

  6. E. J. Johnson and D. M. Larsen, Phys. Rev. Lett. 16, 655 (1966).

    Article  ADS  Google Scholar 

  7. I. G. Lang, L. I. Korovin, D. A. Contreras-Solorio, and S. T. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 44(11), 2084 (2002) [Phys. Solid State 44 (11), 2181 (2002)]; cond-mat/0001248.

    Google Scholar 

  8. I. G. Lang, L. I. Korovin, and S. T. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 47(9), 1704 (2005) [Phys. Solid State 47 (9), 1771 (2005)]; cond-mat/0411692.

    Google Scholar 

  9. L. C. Andreani, F. Tassone, and F. Bassani, Solid State Commun. 77, 641 (1991).

    Article  ADS  Google Scholar 

  10. E. L. Ivchenko, Fiz. Tverd. Tela (Leningrad) 33(8), 2388 (1991) [Sov. Phys. Solid State 33 (8), 1344 (1991)].

    Google Scholar 

  11. E. L. Ivchenko and A. V. Kavokin, Fiz. Tverd. Tela (St. Petersburg) 34(6), 1815 (1992) [Sov. Phys. Solid State 34 (6), 1344 (1992)].

    Google Scholar 

  12. L. C. Andreani, in Confined Electrons and Photons, Ed. by E. Burstein and C. Weisbuch (Plenum, New York, 1995).

    Google Scholar 

  13. F. Tassone, F. Bassani, and L. C. Andreani, Phys. Rev. B: Condens. Matter 45(11), 6023 (1992).

    ADS  Google Scholar 

  14. L. C. Andreani, G. Pansarini, A. V. Kavokin, and M. R. Vladimirova, Phys. Rev. B: Condens. Matter 57, 4670 (1998).

    ADS  Google Scholar 

  15. I. G. Lang, V. I. Belitsky, and M. Cardona, Phys. Status Solidi A 164, 307 (1997).

    Article  ADS  Google Scholar 

  16. I. G. Lang and V. I. Belitsky, Phys. Lett. A 245(3–4), 329 (1998).

    Article  ADS  Google Scholar 

  17. I. G. Lang and V. I. Belitsky, Solid State Commun. 107(10), 577 (1998).

    Article  ADS  Google Scholar 

  18. L. I. Korovin, I. G. Lang, D. A. Contreras-Solorio, and S. T. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 42(12), 2230 (2000) [Phys. Solid State 42 (12), 2300 (2000)]; cond-mat/0006364.

    Google Scholar 

  19. I. G. Lang, L. I. Korovin, D. A. Contreras Solorio, and S. T. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 43(6), 1117 (2001) [Phys. Solid State 43 (6), 1159 (2001)]; cond-mat/0004178.

    Google Scholar 

  20. L. I. Korovin, I. G. Lang, D. A. Contreras-Solorio, and S. T. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 43(11), 2091 (2001) [Phys. Solid State 43 (11), 2182 (2001)]; cond-mat/0104262.

    Google Scholar 

  21. L. I. Korovin, I. G. Lang, D. A. Contreras-Solorio, and S. T. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 44(9), 1681 (2002) [Phys. Solid State 44 (9), 1759 (2002)]; cond-mat/0203390.

    Google Scholar 

  22. I. G. Lang, L. I. Korovin, and S. T. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 46(9), 1706 (2004) [Phys. Solid State 46 (9), 1761 (2004)]; cond-mat/0311180.

    Google Scholar 

  23. I. G. Lang, L. I. Korovin, and S. T. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 48(9), 1693 (2006) [Phys. Solid State 48 (9), 1795 (2006)]; cond-mat/0403519; S. T. Pavlov, I. G. Lang, and L. I. Korovin, in Proceedings of the 12th International Symposium “Nanostructures: Science and Technology-2004,” Ioffe Physical-Technical Institute, St. Petersburg, Russia, 2004 (St. Petersburg, 2004), p. 284 [in Russian].

    Google Scholar 

  24. L. I. Korovin, I. G. Lang, and S. T. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 48(12), 2208 (2006) [Phys. Solid State 48 (12), 3227 (2006)]; cond-mat/0605650.

    Google Scholar 

  25. L. I. Korovin, I. G. Lang, and S. T. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 49(10), 1893 (2007) [Phys. Solid State 49 (10), 1988 (2007)]; cond-mat/07041697.

    Google Scholar 

  26. L. I. Korovin, I. G. Lang, and S. T. Pavlov, Fiz. Tverd. Tela (St. Petersburg) 50(2), 328 (2008) [Phys. Solid State 50 (2), 341 (2008)].

    Google Scholar 

  27. A. Garsia-Cristobal, A. Cantarero, and C. Trallero-Giner, Phys. Rev. B: Condens. Matter 49, 13430 (1994).

    ADS  Google Scholar 

  28. I. V. Lerner and Yu. E. Lozovik, Zh. Éksp. Teor. Fiz. 78(3), 1167 (1980) [Sov. Phys. JETP 51 (3), 588 (1980)].

    Google Scholar 

  29. J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).

    Article  MATH  ADS  Google Scholar 

  30. I. M. Tsidil’kovskiĭ, Band Structure of Semiconductors (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  31. I. G. Lang, L. I. Korovin, and S. T. Pavlov, Zh. Éksp. Teor. Fiz. 133(6), 1169 (2008) [JETP 106 (6), 1019 (2008)]; cond-mat/0703051.

    Google Scholar 

  32. I. G. Lang, V. I. Belitsky, A. Cantarero, L. I. Korovin, S. T. Pavlov, and M. Cardona, Phys. Rev. B: Condens. Matter 54(24), 17768 (1996).

    ADS  Google Scholar 

  33. I. E. Tamm, Fundamentals of the Theory of Electricity (Nauka, Moscow, 1966; Central Books, London, 1980), p. 439.

    Google Scholar 

  34. V. I. Smirnov, Course of Higher Mathematics (Pergamon, London, 1964; Nauka, Moscow, 1974), Vol. II, p. 85.

    Google Scholar 

  35. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984), p. 412.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Lang.

Additional information

Original Russian Text © I.G. Lang, S.T. Pavlov, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 8, pp. 1614–1620.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, I.G., Pavlov, S.T. Pulsed and monochromatic excitation of semiconductor quantum wells under the conditions of quantum confinement. Phys. Solid State 52, 1736–1743 (2010). https://doi.org/10.1134/S1063783410080263

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410080263

Keywords

Navigation