Skip to main content
Log in

On the effective Debye temperatures of the C60 fullerite

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effective Debye temperatures Θeff determined for solids by different physical methods have been analyzed and compared. Attention has been focused on the original parameter of the Debye theory of heat capacity, i.e., the translational calorimetric Debye temperature Θ t c (0), and the X-ray Debye temperature Θ x in the framework of the Debye-Waller theory for the C60 fullerite. It has been established that the true Debye law T 3 is satisfied for the C60 fullerite over a very narrow range of temperatures: 0.4 K ≤ T ≤ 1.8 K. For this reason, the experimental Debye temperatures Θ t c (0) obtained for the C60 fullerite by different authors in the range T > 4.2 K are characterized by a large scatter (by a factor of ∼5). It has been revealed that the value Θ t c (0) = 77.12 K calculated in this paper with the use of the six-term Betts formula from the harmonic elastic constants \( \tilde C_{ijkl} \) of the C60 single crystal in the limit T = 0 K is closest to the true Debye temperature. It has been demonstrated using the method of equivalent moments that the real spectral frequency distribution of translational lattice vibrations g(ω) for the C60 fullerite deviates from a parabolic distribution. The effective Debye temperatures Θeff involved in applied problems of thermodynamics of crystals and elastic scattering of different radiations from lattice vibrations have been determined. The quantitative measure of anharmonicity of translational and librational lattice vibrations of the C60 fullerite has been determined. This has made it possible to empirically evaluate the lattice thermal conductivity κ of the C60 fullerite at T ≈ 300 K: κ(300) = 0.80 W (m/K), which is in good agreement with the experimental thermal conductivity κexp = 0.78 W (m/K) at T ≈ 250 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Kolesnichenko and V. M. Loktev, Encyclopedic Dictionary of Solid State Physics (Naukova Dumka, Kiev, 1988), Vol. 2, p. 466 [in Russian].

    Google Scholar 

  2. M. N. Magomedov, Fiz. Tverd. Tela (St. Petersburg) 47(4), 758 (2005) [Phys. Solid State 47 (4), 785 (2005)].

    Google Scholar 

  3. B. V. Lebedev, Zh. Fiz. Khim. 75(5), 775 (2001) [Russ. J. Phys. Chem. A 75 (5), 687 (2001)].

    Google Scholar 

  4. E. Graivei, B. Mysten, M. Grossart, A. Demain, and J.-P. Issi, Solid State Commun. 85, 73 (1993).

    Article  ADS  Google Scholar 

  5. V. N. Bezmel’nitsyn, A. V. Eletskii, and M. V. Okun’, Usp. Fiz. Nauk 168(11), 1195 (1998) [Phys.—Usp. 41 (11), 1091 (1998)].

    Article  Google Scholar 

  6. W. P. Beyermann, M. F. Hundey, and J. D. Thompson, Phys. Rev. Lett. 68, 2046 (1992).

    Article  ADS  Google Scholar 

  7. N. A. Aksenova, A. T. Isakina, A. I. Prokhvatilov, and M. A. Strzhemechnyĭ, Fiz. Nizk. Temp. (Kharkov) 25(8–9), 964 (1999) [Low Temp. Phys. 25 (8–9), 724 (1999)].

    Google Scholar 

  8. G. A. Alers, in Physical Acoustics: Principles and Methods, Vol. 3, Part B: Lattice Dynamics, Ed. by W. P. Mason (Academic, New York, 1965; Mir, Moscow, 1968), p. 13.

    Google Scholar 

  9. J. R. Olson, K. A. Tropp, and R. O. Pohl, Science (Washington) 259, 1145 (1993).

    Article  ADS  Google Scholar 

  10. G. Leibfried, “Gittertheorie der mechanischen und thermischen Eigenschaften der Kristalle,” in Handbuch de Physik, Ed. by S. Flügge (Springer, Berlin, 1955; Fizmatgiz, Moscow, 1963), Vol. 7, Part 1 [in German and in Russian].

    Google Scholar 

  11. V. D. Natsik and A. V. Podol’skiĭ, Fiz. Nizk. Temp. (Kharkov) 26(11), 1155 (2000) [Low Temp. Phys. 26 (11), 857 (2000)].

    Google Scholar 

  12. Solid State Physics, Ed. by F. Zeitz and D. Turnbull, Vol. 12: G. Leibfried and W. Ludwig, Theory of Anharmonic Effects in Crystals (Academic, New York, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  13. M. Blackman, in Handbuch der Physik, Ed. by S. Flügge (Springer, Berlin, 1955), Vol. 7, Part 1, p. 325.

    Google Scholar 

  14. R. W. James, Optical Principles of the Diffraction of X-Rays (Bell, London, 1948; Inostrannaya Literatura, Moscow, 1950), p. 653.

    Google Scholar 

  15. V. P. Mikhal’chenko and V. A. Melenevskiĭ-Grishchenko, Ukr. Fiz. Zh. 13, 874 (1968).

    Google Scholar 

  16. D. W. J. Cruickshank, Acta Crystallogr. 9, 1005 (1956).

    Article  Google Scholar 

  17. V. P. Mikhal’chenko and V. V. Motskin, Fiz. Tverd. Tela (St. Petersburg) 48(7), 1318 (2006) [Phys. Solid State 48 (7), 1398 (2006)].

    Google Scholar 

  18. H. Hahn and W. Ludviw, Z. Phys. 161, 404 (1963).

    ADS  Google Scholar 

  19. V. P. Mikhal’chenko and S. A. Chorneĭ, Ukr. Fiz. Zh. 20, 1014 (1975).

    Google Scholar 

  20. N. P. Kobelev, R. K. Nikolaev, N. S. Sidorov, and Ya. M. Soĭfer, Fiz. Tverd. Tela (St. Petersburg) 43(12), 2244 (2001) [Phys. Solid State 43 (12), 2344 (2001)].

    Google Scholar 

  21. N. P. Kobelev, R. K. Nikolaev, Ya. M. Soifer, and S. S. Khasanov, Fiz. Tverd. Tela (St. Petersburg) 40(1), 173 (1998) [Phys. Solid State 40 (1), 154 (1998)].

    Google Scholar 

  22. J. Reissland, Physics of Phonons (Benjamin/Cummings, London, 1973; Mir, Moscow, 1975), p. 365.

    Google Scholar 

  23. A. J. Leadbetter, Proc. R. Soc. London, Ser. A 287, 403 (1965).

    Article  ADS  Google Scholar 

  24. A. N. Aleksandrovskii, A. S. Bakai, A. V. Dolbin, V. B. Esellson, G. E. Gadd, V. G. Gavrilko, V. G. Manzhelii, S. Moricca, B. Sundqvist, and B. G. Udovidchenko, Fiz. Nizk. Temp. (Kharkov) 29(4), 432 (2003) [Low Temp. Phys. 29 (4), 324 (2003)].

    Google Scholar 

  25. A. Hebard, Annu. Rev. Mater. Sci. 23, 159 (1993).

    Article  ADS  Google Scholar 

  26. T. Atake, T. Tanaka, H. Kavai, H. K. Kikuchi, K. Saito, S. Suzuki, Y. Ashiba, and I. Ikemoto, Phys. Lett. 196,321 (1992).

    Google Scholar 

  27. S. Hoen, N. G. Chopra, X. D. Chiang, J. How, W. A. Wareca, and A. Zettl, Phys. Rev. B: Condens. Matter 46, 12737 (1992).

    ADS  Google Scholar 

  28. E. V. Manzheliĭ, Fiz. Nizk. Temp. (Kharkov) 29(4), 443 (2003) [Low Temp. Phys. 29 (4), 333 (2003)].

    Google Scholar 

  29. V. P. Mikhal’chenko, Zh. Fiz. Khim. 53, 476 (1979).

    Google Scholar 

  30. Physical Properties of Diamond: A Handbook, Ed. by N. V. Novikov (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  31. Quantum Crystals: A Collection of Papers, Ed. by S. V. Vonsovskiĭ (Mir, Moscow, 1975) [in Russian].

    Google Scholar 

  32. V. B. Efimov, L. P. Mezhov-Deglin, N. K. Nikolaev, and N. S. Sidorov, Fiz. Nizk. Temp. (Kharkov) 27(5), 558 (2001) [Low Temp. Phys. 27 (5), 412 (2001)].

    Google Scholar 

  33. G. A. Slack, J. Phys. Chem. Solids 34, 321 (1973).

    Article  ADS  Google Scholar 

  34. V. P. Mikhal’chenko and S. A. Chorneĭ, Ukr. Fiz. Zh. 20, 1021 (1975).

    Google Scholar 

  35. L. Shebanovs, J. Maniks, and J. Kainas, J. Cryst. Growth 234, 202 (2002).

    Article  ADS  Google Scholar 

  36. V. V. Dikiĭ and G. Ya. Kabo, Usp. Khim. 69, 107 (2000).

    Google Scholar 

  37. V. P. Mikhal’chenko, “On the Quantitative Estimation of Sizes of Nanocrystals,” in Proceedings of the International Conference “Current Problems of Solid State Physics” (FTT-2007), Minsk, Belarus, 2007 (National Academy of Sciences of Belarus, Minsk, 2007), Vol. 3, p. 312.

    Google Scholar 

  38. V. V. Skorokhod and A. V. Ragulya, in Advanced Materials Science: The 21st Century, Ed. by I. K. Pokhodnya (Cambridge International Science, Cambridge, 1999; Akademperiodika, Kiev, 2003), Vol. 2, p. 14.

    Google Scholar 

  39. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Zh. Ren, Science (Washington) 320(5876), 634 (2008).

    Article  ADS  Google Scholar 

  40. S. S. Mitra and S. K. Joshi, Physica (Amsterdam) 27,376 (1961).

    Article  ADS  Google Scholar 

  41. M. C. Abramo and C. Cassato, J. Phys. Chem. Solids 57, 1751 (1996).

    Article  ADS  Google Scholar 

  42. V. D. Blank, M. Yu. Popov, N. A. L’vova, K. V. Gogolinskii, and V. N. Reshetov, Pis’ma Zh. Tekh. Fiz. 23(14), 25 (1997) [Tech. Phys. Lett. 23 (7), 546 (1997)].

    Google Scholar 

  43. V. V. Kechin, Pis’ma Zh. Éksp. Teor. Fiz. 79(1), 46 (2004) [JETP Lett. 79 (1), 40 (2004)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Mikhal’chenko.

Additional information

Original Russian Text © V.P. Mikhal’chenko, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 7, pp. 1444–1452.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhal’chenko, V.P. On the effective Debye temperatures of the C60 fullerite. Phys. Solid State 52, 1549–1558 (2010). https://doi.org/10.1134/S1063783410070334

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410070334

Keywords

Navigation