Skip to main content
Log in

Gap discrete breathers in two-component three-dimensional and two-dimensional crystals with Morse interatomic potentials

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The properties of gap discrete breathers in three-dimensional and two-dimensional crystals of the composition A 3 B with interatomic bonds described by the Morse potential have been investigated by the molecular dynamics method for different ratios between the masses of components m A /m B . The transition to a thermal equilibrium from a state far from equilibrium has been studied for the two-dimensional crystal. In this case, a short-wavelength phonon vibrational mode is excited in the crystal. This mode appears to be modulationally unstable for not too small amplitudes. During the transition to the state characterized by a uniform energy distribution between all vibrational modes of the crystal, the energy is localized in the form of gap discrete breathers, which exist in time intervals that exceed their oscillation period by several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970 (1988).

    Article  ADS  Google Scholar 

  2. S. Flach and C. R. Willis, Phys. Rep. 295, 181 (1998).

    Article  MathSciNet  Google Scholar 

  3. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic, Amsterdam, 2003).

    Google Scholar 

  4. A. E. Miroshnichenko, S. Flach, M. V. Fistul, Y. Zolotaryuk, and J. B. Page, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 066601 (2001).

    Google Scholar 

  5. S. Flach and A. V. Gorbach, Phys. Rep. 467, 1 (2008).

    Article  ADS  Google Scholar 

  6. M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet, and A. Alatas, Phys. Rev. B: Condens. Matter 79, 134304 (2009).

    ADS  Google Scholar 

  7. E. Fermi, J. Pasta, and S. Ulam, Los Alamos Science Laboratory Report NLA-1940, Unpublished. Reprinted in Collected Papers of Enrico Fermi, Ed. by E. Segre (University of Chicago Press, Chicago, IL, United States, 1965), Vol. 2, p. 978.

    Google Scholar 

  8. T. Dauxois, R. Khomeriki, F. Piazza, and S. Ruffo, Chaos 15, 15110 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  9. A. V. Gorbach and M. Johansson, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 066608 (2003).

    Google Scholar 

  10. G. James and M. Kastner, Nonlinearity 20, 631 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Q. Tian and M.-S. Li, Chin. Phys. (Beijing, China) 16, 228 (2007).

    MathSciNet  ADS  Google Scholar 

  12. A. V. Gorbach, A. S. Kovalev, and O. V. Usatenko, Fiz. Tverd. Tela (St. Petersburg) 43(11), 2081 (2001) [Phys. Solid State 43 (11), 2171 (2001)].

    Google Scholar 

  13. S. V. Dmitriev, N. N. Medvedev, R. R. Mulyukov, O. V. Pozhidaeva, A. I. Potekaev, and M. D. Starostenkov, Izv. Vyssh. Uchebn. Zaved., Fiz. 51(8), 73 (2008) [Russ. Phys. J. 51 (8), 858 (2008)].

    Google Scholar 

  14. L. Z. Khadeeva, S. V. Dmitriev, A. A. Nazarov, and A. I. Pshenichnyuk, Perspekt. Mater., No. 7, 327 (2009).

  15. S. V. Dmitriev, A. A. Nazarov, A. I. Potekaev, A. I. Pshenichnyuk, and L. Z. Khadeeva, Izv. Vyssh. Uchebn. Zaved., Fiz. 52(2), 21 (2009) [Russ. Phys. J. 52 (2), 132 (2009)].

    Google Scholar 

  16. I. A. Butt and J. A. D. Wattis, J. Phys. A: Math. Gen. 40, 1239 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. I. A. Butt and J. A. D. Wattis, J. Phys. A: Math. Gen. 39, 4955 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. S. V. Dmitriev, A. A. Sukhorukov, A. I. Pshenichnyuk, L. Z. Khadeeva, A. M. Iskandarov, and Y. S. Kivshar, Phys. Rev. B: Condens. Matter 80, 094302 (2009).

    ADS  Google Scholar 

  19. A. A. Kiselev and A. J. Sievers, Phys. Rev. B: Condens. Matter 55(9), 5755 (1997).

    ADS  Google Scholar 

  20. A. I. Tsaregorodtsev, N. V. Gorlov, B. F. Dem’yanov, and M. D. Starostenkov, Fiz. Met. Metalloved. 58(2), 336 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Dmitriev.

Additional information

Original Russian Text © S.V. Dmitriev, L.Z. Khadeeva, A.I. Pshenichnyuk, N.N. Medvedev, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 7, pp. 1398–1403.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitriev, S.V., Khadeeva, L.Z., Pshenichnyuk, A.I. et al. Gap discrete breathers in two-component three-dimensional and two-dimensional crystals with Morse interatomic potentials. Phys. Solid State 52, 1499–1505 (2010). https://doi.org/10.1134/S1063783410070267

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410070267

Keywords

Navigation