Skip to main content
Log in

Effect of triple junctions of nanotubes on strengthening and fracture toughness of ceramic nanocomposites

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theoretical model has been proposed for describing the influence of triple junctions of nanotubes on the strengthening of a nanocomposite. It has been assumed that the slip of nanotubes along the boundary with the matrix takes place via the nucleation and glide of prismatic dislocation loops enveloping the nanotubes. These loops are retarded by the triple junctions of nanotubes, which leads to a strengthening and increase in the fracture toughness (crack resistance) of the nanocomposite. It has been shown that, in order for the dislocation loop to overcome the triple junction, the shear stress acting on the loop should exceed a certain critical level. This critical stress increases as the radius and wall thickness of the nanotube decrease. The inference has been made that the triple junctions of thinnest nanotubes, such as single-walled carbon nanotubes, should lead to the greatest strengthening and to an increase in the crack resistance of these nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Andrievskiĭ, G. V. Kalinnikov, N. Hellgren, P. Sandstrom, and D. V. Shtanskiĭ, Fiz. Tverd. Tela (St. Petersburg) 42(9), 1624 (2000) [Phys. Solid State 42 (9), 1671 (2000)].

    Google Scholar 

  2. D. V. Shtanskiĭ, S. A. Kulinich, E. A. Levashov, and J. J. Moore, Fiz. Tverd. Tela (St. Petersburg) 45(6), 1122 (2003) [Phys. Solid State 45 (6), 1177 (2003)].

    Google Scholar 

  3. S. Veprek, Rev. Adv. Mater. Sci. 5, 6 (2003).

    Google Scholar 

  4. S. C. Tjong and H. Chen, Mater. Sci. Eng., R 45, 1 (2004).

    Article  Google Scholar 

  5. G. V. Kalinnikov, R. A. Andrievskiĭ, V. N. Kopylov, and D. Louzguine, Fiz. Tverd. Tela (St. Petersburg) 50(2), 359 (2008) [Phys. Solid State 50 (2), 374 (2008)].

    Google Scholar 

  6. D. Galvan, Y. T. Pei, and J. Th. M. De Hosson, Surf. Coat. Technol. 200, 6718 (2006).

    Article  Google Scholar 

  7. A. Mukhopadhyay and B. Basu, Int. Mater. Rev. 52, 257 (2007).

    Article  Google Scholar 

  8. C. C. Koch, I. A. Ovid’ko, S. Seal, and S. Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications (Cambridge University Press, Cambridge, 2007).

    Book  Google Scholar 

  9. A. Swiderska-Sroda, G. Kalisz, B. Palosz, and N. Herlin-Boime, Rev. Adv. Mater. Sci. 18, 422 (2008).

    Google Scholar 

  10. R. A. Andrievski and A. M. Glezer, Usp. Fiz. Nauk 179(4), 337 (2009) [Phys.—Usp. 52 (4), 315 (2009)].

    Article  Google Scholar 

  11. E. T. Thostenson, Z. Ren, and T. W. Chou, Compos. Sci. Technol. 61, 1899 (2001).

    Article  Google Scholar 

  12. J. Cho, A. R. Boccaccini, and M. S. P. Shaffer, J. Mater. Sci. 44, 1934 (2009).

    Article  ADS  Google Scholar 

  13. S. I. Cha, K. T. Kim, S. N. Arshad, C. B. Mo, and S. H. Hong, Adv. Mater. (Weinheim) 17, 1377 (2005).

    Article  Google Scholar 

  14. Y. Feng, H. L. Yuan, and M. Zhang, Mater. Charact. 55, 211 (2005).

    Article  Google Scholar 

  15. R. George, K. T. Kashyap, R. Rahul, and S. Yamdagni, Scr. Mater. 53, 1159 (2005).

    Article  Google Scholar 

  16. H. J. Choi, G. B. Kwon, G. Y. Lee, and D. H. Bae, Scr. Mater. 59, 360 (2008).

    Article  Google Scholar 

  17. P. Q. Dai, W. C. Xu, and Q. Y. Huang, Mater. Sci. Eng., A 483–484, 172 (2008).

    Google Scholar 

  18. J. Kang, P. Nash, J. Li, C. Shi, and N. Zhao, Nanotechnology 20, 235607 (2009).

    Article  ADS  Google Scholar 

  19. R. Z. Ma, J. Wu, B. Q. Wei, J. Liang, and D. H. Wu, J. Mater. Sci. 33, 5243 (1998).

    Article  Google Scholar 

  20. J. Ning, J. Zhang, Y. Pan, and J. Guo, Mater. Sci. Eng., A 357, 392 (2003).

    Article  Google Scholar 

  21. G. D. Zhan, J. D. Kuntz, J. Wan, and A. K. Mukherjee, Nat. Mater. 2, 38 (2003).

    Article  ADS  Google Scholar 

  22. J. D. Kuntz, G. D. Zhan, and A. K. Mukherjee, MRS Bull. 29, 22 (2004).

    Google Scholar 

  23. G. D. Zhan and A. K. Mukherjee, Rev. Adv. Mater. Sci. 10, 185 (2005).

    Google Scholar 

  24. K. Balani, T. Zhang, A. Karakoti, W. Z. Li, S. Seal, and A. Agarwal, Acta Mater. 56, 571 (2008).

    Article  Google Scholar 

  25. V. Singh, R. Diaz, K. Balani, A. Agarwal, and S. Seal, Acta Mater. 57, 335 (2009).

    Article  Google Scholar 

  26. J. Li, G. Papadopulos, and J. Xu, Nature (London) 402, 253 (1999).

    ADS  Google Scholar 

  27. B. O. Satishkumar, P. J. Thomas, A. Govindaraj, and C. N. R. Rao, Appl. Phys. Lett. 77, 2530 (2000).

    Article  ADS  Google Scholar 

  28. M. Terrones, F. Banhart, N. Grobert, J.-C. Charlier, H. Terrones, and P. M. Ajayan, Phys. Rev. Lett. 89, 075505 (2002).

    Article  ADS  Google Scholar 

  29. J. M. Ting and C. C. Chang, Appl. Phys. Lett. 80, 324 (2002).

    Article  ADS  Google Scholar 

  30. P. Ghosh, M. Subramanian, R. A. Afre, M. Zamri, T. Soga, T. Jimbo, V. Filip, and M. Tanemura, Appl. Surf. Sci. 255, 4611 (2009).

    Article  ADS  Google Scholar 

  31. J. Zou, L. Pu, X. Bao, and D. Feng, Appl. Phys. Lett. 80, 1079 (2002).

    Article  ADS  Google Scholar 

  32. M. Yu. Gutkin and I. A. Ovid’ko, Fiz. Tverd. Tela (St. Petersburg) 50(11), 1970 (2008) [Phys. Solid State 50 (11), 2053 (2008)].

    Google Scholar 

  33. M. Yu. Gutkin and I. A. Ovid’ko, Scr. Mater. 59, 414 (2008).

    Article  Google Scholar 

  34. M. Yu. Gutkin and A. E. Romanov, Phys. Status Solidi A 125, 107 (1991).

    Article  ADS  Google Scholar 

  35. M. Yu. Gutkin and A. E. Romanov, Phys. Status Solidi A 129, 363 (1992).

    Article  ADS  Google Scholar 

  36. M. L. Öveçoğlu, M. F. Doerner, and W. D. Nix, Acta Metall. 35, 2947 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Gutkin.

Additional information

Original Russian Text © M.Yu. Gutkin, I.A. Ovid’ko, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 7, pp. 1305–1310.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutkin, M.Y., Ovid’ko, I.A. Effect of triple junctions of nanotubes on strengthening and fracture toughness of ceramic nanocomposites. Phys. Solid State 52, 1397–1403 (2010). https://doi.org/10.1134/S1063783410070127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410070127

Keywords

Navigation