Skip to main content
Log in

Plastic deformation under high-rate loading: The multiscale approach

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A two-level approach has been proposed for describing the plastic deformation under high-rate loading of metals. The characteristics of the motion of dislocations under shear stresses have been investigated at the atomistic level by using the molecular dynamics simulation. The macroscopic motion of a material has been described at the continuum level with the use of the model of continuum mechanics with dislocations, which uses information obtained at the atomistic level on the dislocation dynamics. The proposed approach has been used to study the evolution of the dislocation subsystem under shock-wave loading of an aluminum target. The behavior of the dynamic yield stress with an increase in the temperature has been analyzed. The results of the calculations are in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Kanel’, V. E. Fortov, and S. V. Razorenov, Usp. Fiz. Nauk 177(8), 809 (2007) [Phys.—Usp. 50 (8), 771 (2007)].

    Article  Google Scholar 

  2. V. I. Al’shitz and V. L. Indenbom, Usp. Fiz. Nauk 115(1), 3 (1975) [Sov. Phys.—Usp. 18 (1), 1 (1975)].

    Google Scholar 

  3. G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, J. Appl. Phys. 90, 136 (2001).

    Article  ADS  Google Scholar 

  4. Yu. N. Osetsky and D. J. Bacon, Model Simul. Mater. Sci. Eng. 11, 427 (2003).

    Article  ADS  Google Scholar 

  5. M. S. Daw, S. M. Foiles, and M. I. Baskes, Mater. Sci. Rep. 9, 251 (1992).

    Article  Google Scholar 

  6. A. Yu. Kuksin, V. V. Stegaĭlov, and A. V. Yanilkin, Dokl. Akad. Nauk 420(4–6), 467 (2008) [Dokl. Phys. 53 (6), 287 (2008)].

    Google Scholar 

  7. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B: Condens. Matter 58, 11085 (1998).

    ADS  Google Scholar 

  8. X.-Y. Liu, X. Wei, S. M. Foiles, and J. B. Adams, Appl. Phys. Lett. 72, 1578 (1998).

    Article  ADS  Google Scholar 

  9. X.-Y. Liu, F. Ercolessi, and J. B. Adams, Modell. Simul. Mater. Sci. Eng. 12, 665 (2004).

    Article  ADS  Google Scholar 

  10. S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  MATH  ADS  Google Scholar 

  11. S. V. Kosevich, Usp. Fiz. Nauk 84, 579 (1964) [Sov. Phys.—Usp. 7, 837 (1964)].

    Google Scholar 

  12. S. N. Kolgatin and A. V. Khachatur’yanets, Teplofiz. Vys. Temp. 20, 90 (1982).

    Google Scholar 

  13. M. L. Wilkins, in Methods In Computational Physics, Vol. 3: Fundamental Methods in Hydrodynamics, Ed. by B. Alder, S. Fernbach, and M. Rotenberg (Academic, New York, 1964; Mir, Moscow, 2007), p. 212.

    Google Scholar 

  14. J. L. Tallon and A. Wolfenden, J. Phys. Chem. Solids 40, 831 (1979).

    Article  ADS  Google Scholar 

  15. J. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972).

    Google Scholar 

  16. M. F. Horstemeyer, M. I. Baskes, and S. J. Plimpton, Acta Mater. 49, 4363 (2001).

    Article  Google Scholar 

  17. T. Suzuki, S. Takeuchi, and H. Yoshinaga, Dislocation Dynamics and Plasticity (Springer, Berlin, 1985; Mir, Moscow, 1989).

    Google Scholar 

  18. G. Ananthakrishna, Phys. Rep. 440, 113 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Butterworth-Heinemann, Oxford, 1995).

    Google Scholar 

  20. T. Svensson in Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Ed. by M. A. Meyers and L. E. Murr (Plenum, New York, 1981; Metallurgiya, Moscow, 1984).

    Google Scholar 

  21. G. A. Malygin, Usp. Fiz. Nauk 169(9), 979 (1999) [Phys.—Usp. 42 (9), 887 (1999)].

    Article  Google Scholar 

  22. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 49(6), 961 (2007) [Phys. Solid State 49 (6), 1013 (2007)].

    Google Scholar 

  23. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 47(2), 236 (2005) [Phys. Solid State 47 (2), 246 (2005)].

    Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1980).

    Google Scholar 

  25. A. P. Yalovets, Prikl. Mekh. Tekh. Fiz., No. 1, 151 (1997).

  26. A. A. Predpoditelev, in Dislocation Dynamics, Ed. by V. I. Startsev, V. Z. Bengus, and V. I. Dotsenko (Naukova Dumka, Kiev, 1975), p. 178 [in Russian].

    Google Scholar 

  27. A. Hikata, R. A. Johnson, and C. Elbaum, Phys. Rev. B: Solid State 2, 4856 (1970).

    ADS  Google Scholar 

  28. J. A. Gorman, D. S. Wood, and T. Vreeland, Jr., J. Appl. Phys. 40, 833 (1969).

    Article  ADS  Google Scholar 

  29. J. R. Asay, Int. J. Impact Eng. 20, 21 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yanilkin.

Additional information

Original Russian Text © V.S. Krasnikov, A.Yu. Kuksin, A.E. Mayer, A.V. Yanilkin, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 7, pp. 1295–1304.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasnikov, V.S., Kuksin, A.Y., Mayer, A.E. et al. Plastic deformation under high-rate loading: The multiscale approach. Phys. Solid State 52, 1386–1396 (2010). https://doi.org/10.1134/S1063783410070115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410070115

Keywords

Navigation