Skip to main content
Log in

Thermal conductivity of the pine-biocarbon-preform/copper composite

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thermal conductivity of composites of a new type prepared by infiltration under vacuum of melted copper into empty sap channels (aligned with the sample length) of high-porosity biocarbon preforms of white pine tree wood has been studied in the temperature range 5–300 K. The biocarbon preforms have been prepared by pyrolysis of tree wood in an argon flow at two carbonization temperatures of 1000 and 2400°C. From the experimental values of the composite thermal conductivities, the fraction due to the thermal conductivity of the embedded copper is isolated and found to be substantially lower than that of the original copper used in preparation of the composites. The decrease in the thermal conductivity of copper in the composite is assigned to defects in its structure, namely, breaks in the copper filling the sap channels, as well as the radial ones, also filled by copper. A possibility of decreasing the thermal conductivity of copper in a composite due to its doping by the impurities present in the carbon preform is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Berner, K.C. Mundim, D. E. Ellis, S. Dorfman, D. Fuks, and R. Evenhaim, Sens. Actuators 74, 86 (1999).

    Article  Google Scholar 

  2. J. Korab, P. Štefanik, Š. Kavecky, P. Šebo, and G. Korb, Composites, Part A 33, 577 (2002).

    Article  Google Scholar 

  3. A. Kovačik, S. Emmer, and J. Bielek, Kovové Mater. 42, 365 (2004).

    Google Scholar 

  4. J. Kuang, G. Carotenuto, Z. Zhu, and L. Nicolais, Sci. Eng. Compos. Mater. 5, 9 (1996).

    Google Scholar 

  5. P. Šebo and P. Štefanik, Int. J. Mater. Prod. Technol. 18, 141 (2003).

    Google Scholar 

  6. J. Kovačik, and J. Bielek, Scr. Mater. 35, 151 (1996).

    Article  Google Scholar 

  7. A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, D. Domíguez-Rodriguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Tecnhol. 1, 56 (2004).

    Google Scholar 

  8. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Fiz. Tverd. Tela (St. Petersburg) 48(3), 415 (2006) [Phys. Solid State 48 (3), 441 (2006)].

    Google Scholar 

  9. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Fiz. Tverd. Tela (St. Petersburg) 50(12), 2150 (2008) [Phys. Solid State 50 (12), 2245 (2008)].

    Google Scholar 

  10. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Fiz. Tverd. Tela (St. Petersburg) 51(10), 1909 (2009) [Phys. Solid State 51 (10), 2023 (2009)].

    Google Scholar 

  11. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, and I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Fiz. Tverd. Tela (St. Petersburg) 52(6), 1045 (2010) [Phys. Solid State 52 (6), 1115 (2010)].

    Google Scholar 

  12. I. A. Smirnov, T. S. Orlova, B. I. Smirnov, D. W. Wlosewicz, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Fiz. Tverd. Tela (St. Petersburg) 51(11), 2135 (2009) [Phys. Solid State 51 (11), 2264 (2009)].

    Google Scholar 

  13. P. Greil, T. Lifka, and A. Kaindl J. Eur. Ceram. Soc. 18, 1961 (1998).

    Article  Google Scholar 

  14. C. E. Byrne and D. C. Nagle, Carbon 35, 267 (1997).

    Article  Google Scholar 

  15. C. Zollfrank and H. Siber, J. Eur. Ceram. Soc. 24, 495 (2004).

    Article  Google Scholar 

  16. J. Martinez-Fernandez, A. Munoz, A. R. de Arellano-Lopez, F. M. Varela-Feria, A. Domingiez-Rodriguez, and M. Singh, Acta Mater. 51, 3259 (2003).

    Article  Google Scholar 

  17. V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano-Lopez, and J. Martinez-Fernandez. Mater. Sci. Eng., A 428, 225 (2006).

    Article  Google Scholar 

  18. G. K. White, Experimental Techniques in Low-Temperature Physics (Oxford University Press, Oxford, 1959; Fizmatlit, Moscow, 1961).

    Google Scholar 

  19. E. D. Marquardt, J. P. Le, and Ray Radebagh, in Proceedings of the 11th International Cryocooler Conference, Keystone, CO, United States, 2000 (Keystone, 2000), p. 30.

  20. R. L. Powell, H. M. Roder, and W. M. Rogers, J. Appl. Phys. 28, 1282 (1957).

    Article  ADS  Google Scholar 

  21. A Handbook on Thermal Conductivity of Solids, Ed. by A. S. Okhotin (Énergoatomizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  22. A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).

    Article  ADS  Google Scholar 

  23. E. Ya. Litovskiĭ, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 559 (1980).

    Google Scholar 

  24. G. N. Dul’nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composite Materials (Énergiya, Leningrad, 1974) [in Russian].

    Google Scholar 

  25. P. Gonzalez, J. P. Borrajo, J. Serra, S. Liste, S. Chiussi, B. Leon, K. Semmelmann, A. de Carlos, F. M. Varela-Feria, J. Martinez-Fernandez, and A. R. de Arellano-Lopez, Key Eng. Mater. 254–256, 1029 (2004).

    Article  Google Scholar 

  26. V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Fiz. Tverd. Tela (St. Petersburg) 51(11), 2118 (2009) [Phys. Solid State 51 (11), 2247 (2009)].

    Google Scholar 

  27. A. I. Shelykh, B. I. Smirnov, T. S. Orlova, I. A. Smirnov, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Fiz. Tverd. Tela (St. Petersburg) 48(2), 214 (2006) [Phys. Solid State 48 (2), 229 (2006)].

    Google Scholar 

  28. L. S. Parfen’eva, B. I. Smirnov, I. A. Smirnov, H. Misiorek, J. Mucha, A. Jezowski, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and R. Sepulveda, Fiz. Tverd. Tela (St. Petersburg) 49(2), 204 (2007) [Phys. Solid State 49 (2), 211 (2007)].

    Google Scholar 

  29. T. S. Orlova, D. V. Il’in, B. I. Smirnov, I. A. Smirnov, R. Sepulveda, J. Martinez-Fernandez, and A. R. de Arellano-Lopez, Fiz. Tverd. Tela (St. Petersburg) 49(2), 198 (2007) [Phys. Solid State 49 (2), 205 (2007)].

    Google Scholar 

  30. V. V. Popov, T. S. Orlova, J. Ramirez-Rico, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Fiz. Tverd. Tela (St. Petersburg) 50(10), 1748 (2008) [Phys. Solid State 50 (10), 1819 (2008)].

    Google Scholar 

  31. G. K. White and S. B. Woods, Philos. Mag. 45, 1343 (1954).

    Google Scholar 

  32. L. A. Novitskiĭ and I. G. Kozhevnikov, Thermal and Physical Properties of Materials at Low Temperatures: A Handbook (Mashinostroenie, Moscow, 1975) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Smirnov.

Additional information

Original Russian Text © L.S. Parfen’eva, T.S. Orlova, B.I. Smirnov, I.A. Smirnov, H. Misiorek, A. Jezowski, K.T. Faber, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 7, pp. 1262–1268.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parfen’eva, L.S., Orlova, T.S., Smirnov, B.I. et al. Thermal conductivity of the pine-biocarbon-preform/copper composite. Phys. Solid State 52, 1348–1355 (2010). https://doi.org/10.1134/S1063783410070048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410070048

Keywords

Navigation