Skip to main content
Log in

Comparative X-ray absorption investigation of fluorinated single-walled carbon nanotubes

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The C 1s and F 1s X-ray absorption spectra of pristine and fluorinated single-walled carbon nanotubes with different fluorine contents and nanodiamond as a reference compound have been measured with the aim of characterizing single-walled carbon nanotubes and their products formed upon treatment of the nanotubes with molecular fluorine at a temperature of 190°C. The spectra obtained have been analyzed by thoroughly comparing with the previously measured spectra of highly oriented pyrolytic graphite and fluorinated multiwalled carbon nanotubes and the spectrum of nanodiamond. It has been established that the fluorination of single-walled and multiwalled carbon nanotubes leads to similar results and is characterized by the attachment of fluorine atoms to carbon atoms on the lateral surface of the nanotube with the formation of the σ(C-F) bonds due to the covalent mixing of F 2p and C 2p z π valence electron states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature (London) 354, 56 (1991).

    Article  ADS  Google Scholar 

  2. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, CA, United States, 1996).

    Google Scholar 

  3. R. Saito, M. S. Dresselhaus, and G. Dresselhaus, Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Google Scholar 

  4. X. Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young, Chem. Mater. 12, 1049 (2000).

    Article  Google Scholar 

  5. B. Gao, G. Z. Yue, Q. Qui, Y. Cheng, H. Shimodu, L. Fleming, and O. Zhou, Adv. Mater. (Weinheim) 13, 1770 (2001).

    Article  Google Scholar 

  6. C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, and Y. Yan, Nano Lett. 4, 345 (2004).

    Article  ADS  Google Scholar 

  7. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, Science (Washington) 286, 1127 (1999).

    Article  Google Scholar 

  8. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon, Science (Washington) 282, 95 (1998).

    Article  ADS  Google Scholar 

  9. E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, and J. L. Margrave, Chem. Phys. Lett. 296, 188 (1998).

    Article  ADS  Google Scholar 

  10. M. M. Brzhezinskaya, N. A. Vinogradov, V. E. Muradyan, Yu. M. Shul’ga, N. V. Polyakova, and A. S. Vinogradov, Fiz. Tverd. Tela (St. Petersburg) 50(3), 565 (2008) [Phys. Solid State 50 (3), 587 (2008)].

    Google Scholar 

  11. M. M. Brzhezinskaya, V. E. Muradyan, N. A. Vinogradov, A. B. Preobrajenski, W. Gudat, and A. S. Vinogradov, Phys. Rev. B: Condens. Matter 79, 155439 (2009).

    ADS  Google Scholar 

  12. A. V. Krestinin, N. A. Kiselev, A. V. Raevskii, A. G. Ryabenko, D. N. Zakharov, and G. I. Zvereva, Eurasian Chem.-Technol. J. 5, 7 (2003).

    Google Scholar 

  13. A. V. Krestinin, A. V. Raevskii, N. A. Kiselev, G. I. Zvereva, O. M. Zhigalina, and O. I. Kolesova, Chem. Phys. Lett. 381, 529 (2003).

    Article  ADS  Google Scholar 

  14. V. Yu. Dolmatov, Nanotekhnika 1, 56 (2008).

    Google Scholar 

  15. S. I. Fedoseenko, I. E. Iossifov, S. A. Gorovikov, J.-H. Schmidt, R. Follath, S. L. Molodtsov, V. K. Adamchuk, and G. Kaindl, Nucl. Instrum. Methods Phys. Res., Sect. A 470, 84 (2001).

    Article  ADS  Google Scholar 

  16. A. P. Lukirskiĭ and I. A. Brytov, Fiz. Tverd. Tela (Leningrad) 6(1), 43 (1964) [Sov. Phys. Solid State 6 (1), 32 (1964)].

    Google Scholar 

  17. W. Gudat and C. Kunz, Phys. Rev. Lett. 29, 169 (1972).

    Article  ADS  Google Scholar 

  18. A. S. Vinogradov, A. Yu. Dukhnyakov, V. M. Ipatov, D. E. Onopko, A. A. Pavlychev, and S. A. Titov, Fiz. Tverd. Tela (Leningrad) 24(5), 1417 (1982) [Sov. Phys. Solid State 24 (5), 803 (1982)].

    Google Scholar 

  19. P. A. Brühwiler, A. J. Maxwell, C. Puglia, A. Nilsson, S. Andersson, N. Mårtensson, Phys. Rev. Lett. 74, 614 (1995).

    Article  ADS  Google Scholar 

  20. S. Banerjee, T. Hemraj-Benny, M. Balasubramanian, D. A. Fisher, J. A. Misewich, and S. S. Wong, Chem. Commun. (Cambridge) 7, 772 (2004).

    Article  Google Scholar 

  21. S. Banerjee, T. Hemraj-Benny, S. Sambasivan, D. A. Fischer, J. A. Misewich, and S. S. Wong, J. Phys. Chem. B 109, 8489 (2005).

    Article  Google Scholar 

  22. T. Hemraj-Benny, S. Banerjee, S. Sambasivan, D. A. Fischer, G. Eres, A. A. Puzetzky, D. B. Geohegan, D. H. Lowndes, J. A. Misewich, and S. S. Wong, Phys. Chem. Chem. Phys. 8, 5038 (2006).

    Article  Google Scholar 

  23. A. Kuznetsova, I. Popova, J. T. Yates, Jr., M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen. J. Am. Chem. Soc. 123, 10699 (2001).

    Article  Google Scholar 

  24. J. Schiessling, L. Kjeldgaard, F. Rohmund, L. K. L. Falk, E. E. B. Campbell, J. Nordgren, and P. A. Brüwiler, J. Phys.: Condens. Matter 15, 6563 (2003).

    Article  ADS  Google Scholar 

  25. A. V. Krestinin, A. P. Kharitonov, Yu. M. Shul’ga, O. M. Zhigalina, E. I. Knerel’man, M. Dubois, M. M. Brzhezinskaya, A. S. Vinogradov, A. B. Preobrazhenskii, G. I. Zvereva, M. B. Kislov, V. M. Martynenko, I. I. Korobov, G. I. Davydova, V. G. Zhigalina, and N. A. Kiselev, Ross. Nantekhnol. 4(1–2), 115 (2009) [Nanotechnol. Russ. 4 (1–2), 60 (2009)].

    Google Scholar 

  26. Carbon Nanotubes, Ed. by M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer, Berlin, 2000).

    Google Scholar 

  27. G. Comelli, J. Stöhr, C. J. Robinson, and W. Jark, Phys. Rev. B: Condens. Matter 38, 7511 (1988).

    ADS  Google Scholar 

  28. J. G. Chen, Surf. Sci. Rep. 30, 1 (1997).

    Article  ADS  Google Scholar 

  29. D. A. Walters, M. J. Casavant, X. C. Qin, C. B. Huffman, P. J. Boul, L. M. Ericson, E. H. Haroz, M. J. O’Connell, K. Smith, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 338, 14 (2001).

    Article  ADS  Google Scholar 

  30. T. T. Fister, G. T. Seidler, J. J. Rehr, J. J. Kas, W. T. Elam, J. O. Cross, and K. P. Nagle, Phys. Rev. B: Condens. Matter 75, 174106 (2007).

    ADS  Google Scholar 

  31. M. M. Brzhezinskaya, N. A. Vinogradov, V. E. Muradyan, Yu. M. Shul’ga, R. Püttner, A. S. Vinogradov, and W. Gudat, Fiz. Tverd. Tela (St. Petersburg) 51(9), 1846 (2009) [Phys. Solid State 51 (9), 1961 (2009)].

    Google Scholar 

  32. C. P. Ewels, G. Van Lier, J.-C. Charlier, M. I. Heggie, and P. R. Briddon, Phys. Rev. Lett. 96, 216103 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Vinogradov.

Additional information

Original Russian Text © M.M. Brzhezinskaya, A.S. Vinogradov, A.V. Krestinin, G.I. Zvereva, A.P. Kharitonov, I.I. Kulakova, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 4, pp. 819–825.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzhezinskaya, M.M., Vinogradov, A.S., Krestinin, A.V. et al. Comparative X-ray absorption investigation of fluorinated single-walled carbon nanotubes. Phys. Solid State 52, 876–883 (2010). https://doi.org/10.1134/S1063783410040323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410040323

Keywords

Navigation