Skip to main content
Log in

Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Reflection and transmission infrared spectra of BiFeO3 ceramic samples have been measured using submillimeter spectroscopy (on a backward-wave tube spectrometer) and Fourier-transform infrared spectroscopy in the frequency range from 5 to 1000 cm−1 at temperatures in the range from 10 to 500 K. New resonant modes (probably, magnetic in nature) with the eigenfrequencies decreasing with an increase in the temperature have been recorded in the range 10–30 cm−1 by IR spectroscopy for the first time. An additional absorption with a fairly large dielectric contribution has been revealed in the range 30–60 cm−1. It has been demonstrated that the corresponding oscillators couple with both the lowest frequency phonon mode and the magnetic subsystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schmid, Ferroelectrics 162, 317 (1994); W. Erenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).

    Article  Google Scholar 

  2. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).

    Article  ADS  Google Scholar 

  3. S. M. Skinner, IEEE Trans. Parts, Mater. Packag. 6, 68 (1970).

    Article  Google Scholar 

  4. F. Kubel and H. Schmid, Acta Crystallogr., Sect B: Struct. Sci. 46, 698 (1990).

    Article  Google Scholar 

  5. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980).

    Article  ADS  Google Scholar 

  6. Y. N. Venevtsev, V. V. Gagulin, and I. D. Zhitomirsky, Ferroelectrics 73, 221 (1987).

    Article  Google Scholar 

  7. R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, and J. F. Scott, Phys. Rev. B: Condens. Matter 77, 014110 (2008).

    ADS  Google Scholar 

  8. M. K. Singh, W. Prellier, M. P. Singh, R. S. Katiyar, and J. F. Scott, Phys. Rev. B: Condens. Matter 77, 144403 (2008).

    ADS  Google Scholar 

  9. R. de Sousa and J. E. Moore, Phys. Rev. B: Condens. Matter 77, 012406 (2008).

    ADS  Google Scholar 

  10. M. Cazayous, Y. Gallais, A. Sacuto, R. de Sousa, D. Lebeugle, and D. Colson, Phys. Rev. Lett. 101, 037601 (2008).

    Article  ADS  Google Scholar 

  11. M. K. Singh, R. S. Katiyar, and J. F. Scott, J. Phys.: Condens. Matter 20, 252 203 (2008).

    Google Scholar 

  12. S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, J. Petzelt, J. Prokleška, R. Haumont, and J. Kreisel, Phys. Rev. B: Condens. Matter 75, 024403 (2007).

    ADS  Google Scholar 

  13. R. P. S. M. Lobo, R. L. Moreira, D. Lebeugle, and D. Colson, Phys. Rev. B: Condens. Matter 76, 172105 (2007).

    ADS  Google Scholar 

  14. A. Maitre, M. Francois, and J. C. Gashon, J. Phase Equilib. Diffus. 25, 59 (2004).

    Google Scholar 

  15. S. M. Selbach, M.-A. Einarsrud, and T. Grande, Chem. Mater. 21, 169 (2009).

    Article  Google Scholar 

  16. S. A. Fedulov, Yu. N. Venevtsev, G. S. Zhdanov, and E. P. Smazhevskaya, Kristallografiya 6(5), 795 (1961) [Sov. Phys. Crystallogr. 6 (5), 640 (1961)].

    Google Scholar 

  17. J. L. Mukherjee and F. Y. Wang, J. Am. Ceram. Soc. 54, 31 (1971).

    Article  Google Scholar 

  18. G. D. Achenbach, W. J. James, and R. Gerson, J. Am. Ceram. Soc. 50, 437 (1967).

    Article  Google Scholar 

  19. M. Valant, A.-K. Axelsson, and N. Alford, Chem. Mater. 19, 5431 (2007).

    Article  Google Scholar 

  20. N. Shamir, E. Gurewitz, and H. Shaked, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 34, 662 (1978).

    Article  ADS  Google Scholar 

  21. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M. Liu, and Z. G. Liu, Appl. Phys. Lett. 84, 1731 (2004).

    Article  ADS  Google Scholar 

  22. G. V. Kozlov and A. A. Volkov, in Topics in Applied Physics, Vol. 74: Millimeter and Submillimeter Wave Spectroscopy of Solids, Ed. by G. Gruner (Springer, Berlin, 1998), p. 52.

    Google Scholar 

  23. A. S. Barker and J. J. Hopfield, Phys. Rev. [Sect.] A 135, 1732 (1964).

    ADS  Google Scholar 

  24. R. Haumont, J. Kreisel, and P. Bouvier, Phase Transform. 79, 1043 (2006); R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, Phys. Rev. B: Condens. Matter 73, 132101 (2006).

    Article  Google Scholar 

  25. M. Cazayous, D. Malka, D. Lebeugle, and D. Colson, Appl. Phys. Lett. 91, 071910 (2007).

    Article  ADS  Google Scholar 

  26. H. Fukumura, S. Matsui, H. Harima, T. Takahashi, T. Itoh, K. Kisoda, M. Tamada, Y. Noguchi, and M. Miyayama, J. Phys.: Condens. Matter 19, 365224 (2007).

    Article  Google Scholar 

  27. D. Kothari, V. R. Reddy, V. G. Sathe, A. Gupta, A. Banerjee, and A. M. Awasthi, J. Magn. Magn. Mater. 320, 548 (2008).

    Article  ADS  Google Scholar 

  28. D. Rout, K.-S. Moon, and S.-J. L. Kang, J. Raman Spectrosc. 40, 618 (2009).

    Article  ADS  Google Scholar 

  29. Y. Yang, J. Y. Sun, K. Zhu, Y. L. Liu, J. Chen, and X. R. Xing, Physica B (Amsterdam) 404, 171 (2009).

    ADS  Google Scholar 

  30. P. Hermet, M. Goffinet, J. Kreisel, and Ph. Ghosez, Phys. Rev. B: Condens. Matter 75, 220 102(R) (2007).

    Google Scholar 

  31. H. M. Tütüncü and G. P. Srivastava, J. Appl. Phys. 103, 083712 (2008); P. Hermet, M. Goffinet, and Ph. Ghosez, J. Appl. Phys. 105, 036 108 (2009); H. M. Tütüncü and G. P. Srivastava, J. Appl. Phys. 105, 036109 (2009).

    Article  ADS  Google Scholar 

  32. M. Goffinet, P. Hermet, D. I. Bilc, and Ph. Ghosez, Phys. Rev. B: Condens. Matter 79, 014403 (2009).

    ADS  Google Scholar 

  33. P. Rovillain, M. Cazayous, Y. Gallais, A. Sacuto, R. P. S. M. Lobo, D. Lebeugle, and D. Colson, Phys. Rev. B: Condens. Matter 79, 180411 (2009).

    ADS  Google Scholar 

  34. D. C. Arnold, K. S. Knight, F. D. Morrison, and P. Lightfoot, Phys. Rev. Lett. 102, 027602 (2009).

    Article  ADS  Google Scholar 

  35. O. V. Kovalev, Irreducible Representations of the Space Groups (Academy of Sciences of the Soviet Union, Kiev, Soviet Union, 1961; Gordon and Breach, New York, 1965).

    Google Scholar 

  36. V. I. Torgashev, V. B. Shirokov, A. S. Prokhorov, and L. A. Shuvalov, Kristallografiya 50(4), 689 (2005) [Sov. Phys. Crystallogr. 50 (4), 637 (2005)].

    Google Scholar 

  37. S. M. Selbach, T. Tybell, M.-A. Einarsrud, and T. Grande, Adv. Mater. (Weinheim) 20, 3692 (2008).

    Article  Google Scholar 

  38. R. Haumont, P. Bouvier, A. Pashkin, K. Rabia, S. Frank, B. Dkhil, W. A. Crichton, C. A. Kuntscher, and J. Kreisel, Phys. Rev. B: Condens. Matter 79, 184 110 (2009).

    Google Scholar 

  39. J. T. Last, Phys. Rev. 105, 1740 (1957).

    Article  ADS  Google Scholar 

  40. J. C. Slater, Phys. Rev. 78, 748 (1950).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Porodinkov.

Additional information

Original Russian Text © G.A. Komandin, V.I. Torgashev, A.A. Volkov, O.E. Porodinkov, I.E. Spektor, A.A. Bush, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 4, pp. 684–692.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komandin, G.A., Torgashev, V.I., Volkov, A.A. et al. Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz. Phys. Solid State 52, 734–743 (2010). https://doi.org/10.1134/S1063783410040104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410040104

Keywords

Navigation