Band structure of a two-dimensional resonant photonic crystal

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


The band structure of two-dimensional resonant photonic crystals of two types has been calculated using the expansion of eigenfunctions in plane waves. Crystals of one type consist of infinite dielectric cylinders forming a square lattice filled with a resonant gas, and crystals of the other type consist of infinite cylindrical holes filled with a resonant gas and forming a square lattice in a dielectric matrix. It has been shown that, in both cases, the dispersion of a resonant gas in combination with the dispersion of a two-dimensional structure with a photonic band gap leads to the appearance of an additional narrow transmission band near the edge of the band gap or an additional band gap in the continuous spectrum of the photonic crystal. The calculations performed have demonstrated that new dispersion properties substantially depend on the density of the resonant gas, the position of the resonant frequency with respect to the edge of the band gap, and the direction of propagation of electromagnetic waves.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, NJ, United States, 1995).

    MATH  Google Scholar 

  2. 2.

    A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984; Mir, Moscow, 1986).

    Google Scholar 

  3. 3.

    V. F. Shabanov, S. Ya. Vetrov, and A. V. Shabanov, Optics of Real Photonic Crystals: Liquid-Crystal Defects and Inhomogeneities (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  4. 4.

    A. M. Zheltikov, Usp. Fiz. Nauk 170(11), 1203 (2000) [Phys.-Usp. 43 (11), 1125 (2000)].

    Article  Google Scholar 

  5. 5.

    O. Painter, R. K. Lee, A. Schezer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science (Washington) 284, 1819 (1999).

    Article  Google Scholar 

  6. 6.

    M. G. Martemyanov, T. V. Dolgova, and A. A. Fedyanin, Zh. Éksp. Teor. Fiz. 125(3), 527 (2004) [JETP 98 (3), 463 (2004)].

    Google Scholar 

  7. 7.

    F. Wong, S. N. Zhu, K. F. Li, and K. W. Cheah, Appl. Phys. Lett. 88, 071102 (2006).

    Article  ADS  Google Scholar 

  8. 8.

    S. Ya. Vetrov, I. V. Timofeev, and A. V. Shabanov, Phys. Status Solidi RRL 1(3), 92 (2007).

    Article  Google Scholar 

  9. 9.

    K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley, Weinheim, 2004).

    Google Scholar 

  10. 10.

    A. M. Zheltikov, A. N. Naumov, P. Barker, and R. B. Miles, Opt. Spektrosk. 89(2), 309 (2000) [Opt. Spectrosc. 89 (2), 282 (2000)].

    Article  Google Scholar 

  11. 11.

    M. Artoni, G. La Rossa, and F. Bassani, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 046604 (2005).

    ADS  Google Scholar 

  12. 12.

    S. Ya. Vetrov, I. V. Timofeev, and A. Yu. Kutukova, Opt. Spektrosk. 106(5), 840 (2009) [Opt. Spectrosc. 106 (5), 757 (2009)].

    Article  Google Scholar 

  13. 13.

    S. A. Akhmanov and S. Yu. Nikitin, Physical Optics (Oxford University Press, Oxford, 1997; Moscow State University, Moscow, 1998).

    Google Scholar 

  14. 14.

    A. A. Maradudin and A. R. McGurn, Phys. Rev. B: Condens. Matter 48, 17576 (1993).

    ADS  Google Scholar 

  15. 15.

    A. V. Belikov, M. V. Bogdanova, and Yu. E. Lozovik, Mat. Model. 19(4), 19 (2007).

    MATH  Google Scholar 

  16. 16.

    Yu. E. Lozovik and S. L. Éiderman, Fiz. Tverd. Tela (St. Petersburg) 50(11), 1994 (2008) [Phys. Solid State 50 (11), 2024 (2008)].

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Ya. Vetrov.

Additional information

Original Russian Text © S.Ya. Vetrov, I.V. Timofeev, N.V. Rudakova, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 3, pp. 489–494.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vetrov, S.Y., Timofeev, I.V. & Rudakova, N.V. Band structure of a two-dimensional resonant photonic crystal. Phys. Solid State 52, 527–532 (2010).

Download citation


  • Band Structure
  • Photonic Crystal
  • Transmission Band
  • Dielectric Matrix
  • Photonic Crystal Structure