Skip to main content
Log in

Molecular dynamics investigation of the size effect upon the β → α transformation in Zr nanocrystals

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The stability of the β phase in cubic zirconium nanoparticles has been calculated as a function of the size r (r varies in the range from 2.5 to 11.5 nm) by the molecular dynamics method with the many-body interatomic interaction potential obtained within the embedded-atom model. It has been demonstrated that the temperature T k at which the cubic cluster of body-centered cubic zirconium becomes structurally unstable depends nonlinearly on the particle size. The curve T k (r) exhibits a pronounced maximum in the range r ≈ 4.3−4.7 nm. It has been established that the mechanism of the structural transition from the body-centered cubic phase to the hexagonal close-packed phase depends substantially on the particle size. For particles with sizes in the range from 2.5 to 5.0 nm, there exists a temperature range in which the transition from the body-centered cubic phase to the hexagonal close-packed phase remains incomplete for a long time. In this case, two phases coexist and the initial particle undergoes a strong deformation along the habit plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371 (2005).

    Article  ADS  Google Scholar 

  2. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 50(8), 1480 (2008) [Phys. Solid State 50 (8), 1538 (2008)].

    Google Scholar 

  3. A. I. Gusev, Nanocrystalline Materials: Preparation Techniques and Properties (Ural Brunch of the Russian Academy of Sciences, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  4. V. A. Lobodyuk, Fiz. Met. Metalloved. 99(5), 29 (2005) [Phys. Met. Metallogr. 99 (2), 143 (2005)].

    Google Scholar 

  5. É. L. Nagaev, Usp. Fiz. Nauk 162(9), 49 (1992) [Sov. Phys.—Usp. 35 (9), 747 (1992)].

    Google Scholar 

  6. Yu. N. Gornostyrev, M. I. Katsnel’son, A. R. Kuznetsov, and A. V. Trefelov, Pis’ma Zh. Éksp. Teor. Fiz. 70(6), 376 (1999) [JETP Lett. 70 (6), 380 (1999)].

    Google Scholar 

  7. Yu. N. Gornostyrev, I. N. Kar’kin, M. I. Katsnel’son, and A. V. Trefelov, Fiz. Met. Metalloved. 96(2), 19 (2003) [Phys. Met. Metallogr. 96 (2), 135 (2003)].

    Google Scholar 

  8. P. Jensen, Rev. Mod. Phys. 71, 1695 (1999).

    Article  ADS  Google Scholar 

  9. A. T. Kosilov, A. A. Malivanchuk, and E. A. Mikhaĭlov, Fiz. Tverd. Tela (St. Petersburg) 50(7), 1338 (2008) [Phys. Solid State 50 (7), 1392 (2008)].

    Google Scholar 

  10. Yu. Ya. Gafner, S. L. Gafner, and P. Entel, Fiz. Tverd. Tela (St. Petersburg) 46(7), 1287 (2004) [Phys. Solid State 46 (7), 1327 (2004)].

    Google Scholar 

  11. M. S. Daw and M. I. Baskes, Phys. Rev. B: Condens. Matter 29, 6443 (1984).

    ADS  Google Scholar 

  12. M. I. Mendelev and G. J. Ackland, Philos. Mag. Lett. 87, 349 (2007).

    Article  ADS  Google Scholar 

  13. J. R. Morris, C. Z. Wang, K. M. Ho, and C. T. Chan, Phys. Rev. B: Condens. Matter 49, 3109 (1994).

    ADS  Google Scholar 

  14. J. Rifkin, XMD Molecular Dynamics Program (University of Connecticut, Center for Materials Simulation, Storrs, CT, United States, 2002).

    Google Scholar 

  15. J. M. Dickey and A. Paskin, Phys. Rev. 188, 1407 (1969).

    Article  ADS  Google Scholar 

  16. V. Yu. Trubitsin and E. B. Dolgusheva, Phys. Rev. B: Condens. Matter 76, 024308 (2007).

    ADS  Google Scholar 

  17. A. Heiming, W. Petry, J. Trampenau, M. Alba, C. Herzig, H. R. Schober, and G. Vogl, Phys. Rev. B: Condens. Matter 43, 10948 (1991).

    ADS  Google Scholar 

  18. E. Yu. Tonkov, Phase Diagrams of Compounds at High Pressure (Nauka, Moscow, 1979), p. 103 [in Russian].

    Google Scholar 

  19. A. Rytkönen, S. Valkealahti, and M. Manninen, J. Chem. Phys. 108, 5826 (1998).

    Article  ADS  Google Scholar 

  20. L. E. Kar’kina, I. N. Kar’kin, and Yu. N. Gornostyrev, Fiz. Met. Metalloved. 101(2), 146 (2006) [Phys. Met. Metallogr. 101 (2), 130 (2006)].

    Google Scholar 

  21. W. G. Burgers, Physica (Amsterdam) 1, 561 (1934).

    Article  ADS  Google Scholar 

  22. A. V. Dobromyslov and N. I. Taluts, Fiz. Met. Metalloved. 67, 1138 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Trubitsin.

Additional information

Original Russian Text © E.B. Dolgusheva, V.Yu. Trubitsin, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 12, pp. 2352–2358.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgusheva, E.B., Trubitsin, V.Y. Molecular dynamics investigation of the size effect upon the β → α transformation in Zr nanocrystals. Phys. Solid State 51, 2497–2504 (2009). https://doi.org/10.1134/S1063783409120129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409120129

Keywords

Navigation