Skip to main content
Log in

Microplasticity of biomorphic SiC/Al composite under uniaxial compression

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Inhomogeneity of the microplastic strain rate (deformation jumps) of a biomorphic SiC/Al composite under uniaxial compression has been studied by laser interferometry on the nanometer level. The value of strain rate jumps has been calculated from the deviation of the form of separate beats in the interferogram of a deformation from the standard form corresponding to a constant strain rate within one beat. In addition to strain rate oscillations extended by 100–180 nm along the displacement (the variation in the length of the specimen), peaks of small width and amplitude with a distance of 10–20 nm between them are observed, as well as peaks with a width of ∼ 50 nm. These peaks may be associated with the sizes of structural formations of an aluminum alloy (grains, subgrains, precipitates, etc.) or with the sizes of SiC nano- and microcrystals situated separately from large-grain crystals and surrounded by residual carbon. The results of this work offer hope to the possibility of enhancing plasticity and strength of biomorphic composites by increasing the fraction of fine-grain elements (< 1.5 µm) in their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Domingez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1, 95 (2004).

    Google Scholar 

  2. V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).

    Article  Google Scholar 

  3. B. K. Kardashev, B. I. Smirnov, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Mater. Sci. Eng., A 442, 444 (2006).

    Article  Google Scholar 

  4. D. Mallick, Om. Chakrabarti, D. Bhattacharya, M. Mukherjee, H. Maiti, and R. Majumdar, J. Appl. Phys. 101, 033707–1 (2007).

    Article  ADS  Google Scholar 

  5. T. E. Wilkes, J. Y. Pastor, J. Liorca, and K. T. Faber, J. Mater. Res. 23, 1732 (2008).

    Article  ADS  Google Scholar 

  6. T. E. Wilkes, M. L. Young, R. E. Sepulveda, D. C. Dunand, and K. T. Faber, Scr. Mater. 55, 1083 (2006).

    Article  Google Scholar 

  7. B. K. Kardashev, T. S. Orlova, B. I. Smirnov, T. E. Wilkes, and K. T. Faber, Fiz. Tverd. Tela (St. Petersburg) 50(10), 1807 (2008) [Phys. Solid State 50 (10), 1882 (2008)].

    Google Scholar 

  8. N. N. Peschanskaya, Fiz. Tverd. Tela (St. Petersburg) 35(11), 3019 (1993) [Phys. Solid State 35 (11), 1484 (1993)].

    Google Scholar 

  9. N. N. Peschanskaya, A. S. Smolyanskiĭ, and V. Yu. Surovova, Fiz. Tverd. Tela (St. Petersburg) 35(9), 2466 (1993) [Phys. Solid State 35 (9), 1222 (1993)].

    Google Scholar 

  10. N. N. Peschanskaya, V. V. Shpeĭzman, A. B. Sinani, and B. I. Smirnov, Fiz. Tverd. Tela (St. Petersburg) 46(11), 1991 (2004) [Phys. Solid State 46 (11), 2058 (2004)].

    Google Scholar 

  11. N. N. Peschanskaya and J. Hristova, Fiz. Tverd. Tela (St. Petersburg) 48(10), 1786 (2006) [Phys. Solid State 48 (10), 1896 (2006)].

    Google Scholar 

  12. N. N. Peschanskaya, B. I. Smirnov, and V. V. Shpeĭzman, Fiz. Tverd. Tela (St. Petersburg) 50(5), 815 (2008) [Phys. Solid State 50 (5), 848 (2008)].

    Google Scholar 

  13. V. V. Shpeĭzman and N. N. Peschanskaya, Fiz. Tverd. Tela (St. Petersburg) 51(6), 1087 (2009) [Phys. Solid State 51 (6), 1149 (2009)].

    Google Scholar 

  14. N. N. Peschanskaya, B. I. Smirnov, and V. V. Shpeĭzman, Fiz. Tverd. Tela (St. Petersburg) 50(6), 997 (2008) [Phys. Solid State 50 (6), 1039 (2008)].

    Google Scholar 

  15. P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).

    Article  Google Scholar 

  16. Physico-Chemical Properties of Semiconductor Compounds: A Handbook, Ed. by A. V. Novoselov (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  17. C. Zollfrank and H. Sieber, J. Eur. Ceram. Soc. 24, 495 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shpeĭzman.

Additional information

Original Russian Text © V.V. Shpeĭzman, N.N. Peschanskaya, T.S. Orlova, B.I. Smirnov, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 12, pp. 2315–2319.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shpeĭzman, V.V., Peschanskaya, N.N., Orlova, T.S. et al. Microplasticity of biomorphic SiC/Al composite under uniaxial compression. Phys. Solid State 51, 2458–2462 (2009). https://doi.org/10.1134/S1063783409120051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409120051

Keywords

Navigation