Skip to main content
Log in

Identification of recombination centers in wide-band-gap crystals and related nanostructures from spin-dependent tunneling afterglow

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The centers involved in the spin-dependent recombination in KCl: AgCl insulator-semiconductor wide-band-gap crystal structures, bulk ZnO crystals, and quantum dots based on ZnO nanocrystals have been identified by detecting electron paramagnetic resonance from tunneling afterglow. Long tunneling after-glow has been excited by short-term UV irradiation of the sample at liquid-helium temperatures. The observed magnetic quenching of the afterglow at low temperatures results from the Boltzmann polarization of spins of recombination centers. The revealed giant increase in the afterglow intensity is induced by the reorientation of spins of these centers at electron paramagnetic resonance. A new technique for recording the spectra at a high frequency of 94 GHz has been developed and used with the aim of increasing the sensitivity and spectral resolution. This technique has made it possible to separate electron and hole centers in the KCl: AgCl structures and to demonstrate that ZnO: Al quantum dots contain two types of deep acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Baranov, Yu. P. Veshchunov, and N. G. Romanov, Fiz. Tverd. Tela (Leningrad) 22(12), 3732 (1980) [Sov. Phys. Solid States 22 (12), 2186 (1980)].

    Google Scholar 

  2. C. J. Delbecq, Y. Toyozawa, and P. H. Yuster, Phys. Rev. B: Solid State 9, 4497 (1974).

    ADS  Google Scholar 

  3. C. J. Delbecq and P. H. Yuster, Phys. Status Solidi B 68, K21 (1975).

    Article  Google Scholar 

  4. N. G. Romanov, Yu. P. Veshchunov, V. A. Vetrov, and P. G. Baranov, Phys. Status Solidi B 107, K119 (1981).

    Article  Google Scholar 

  5. N. G. Romanov, V. A. Vetrov, and P. G. Baranov, Fiz. Tverd. Tela (Leningrad) 24(10), 3014 (1982) [Sov. Phys. Solid State 24 (10), 1706 (1982)].

    Google Scholar 

  6. N. G. Romanov, V. A. Vetrov, and P. G. Baranov, Fiz. Tverd. Tela (Leningrad) 25(5), 1364 (1983) [Sov. Phys. Solid State 25 (5), 784 (1983)].

    Google Scholar 

  7. P. G. Baranov and N. G. Romanov, Appl. Magn. Reson. 2, 361 (1991).

    Article  Google Scholar 

  8. U. Rogulis, S. Schweizer, and J.-M. Spaeth, Physica B (Amsterdam) 308–310, 66 (2001).

    Google Scholar 

  9. A. G. Badalyan, P. G. Baranov, and R. A. Zhitnikov, Fiz. Tverd. Tela (Leningrad) 19(6), 1847 (1977) [Sov. Phys. Solid State 19 (6), 1079 (1977)].

    Google Scholar 

  10. A. G. Badalyan, P. G. Baranov, and R. A. Zhitnikov, Fiz. Tverd. Tela (Leningrad) 19(12), 3575 (1977) [Sov. Phys. Solid State 19 (12), 2089 (1977)].

    Google Scholar 

  11. H. Vogelsang, O. Husberg, U. Köhler, W. von der Osten, and A. P. Marchetti, Phys. Rev. B: Condens. Matter 61, 1847 (2000).

    ADS  Google Scholar 

  12. P. G. Baranov, N. G. Romanov, V. A. Khramtsov, and R. A. Babuntst, Fiz. Tverd. Tela (St. Petersburg) 42(12), 2166 (2000) [Phys. Solid State 42 (12), 2231 (2000)].

    Google Scholar 

  13. D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, Phys. Rev. A 140, 202 (1965).

    ADS  Google Scholar 

  14. D. Zwingel, J. Lumin. 5, 385 (1972).

    Article  Google Scholar 

  15. D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, and P. G. Baranov, Phys. Rev. Lett. 88, 045504 (2002).

    Article  ADS  Google Scholar 

  16. P. G. Baranov, N. G. Romanov, D. O. Tolmachev, S. B. Orlinskii, J. Shmidt, C. de Mello Donega, and A. Meijerink, Pis’ma Zh. Éksp. Teor. Fiz. 84(7), 475 (2006) [JETP Lett. 84 (7), 400 (2006)].

    Google Scholar 

  17. S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, C. de Mello Donega, and A. Meijerink, Phys. Rev. Lett. 92, 047603 (2004).

    Article  ADS  Google Scholar 

  18. S. B. Orlinskii, H. Blok, J. Schmidt, P. G. Baranov, C. de Mello Donega, and A. Meijerink, Phys. Rev. B: Condens. Matter 74, 045204 (2006).

    ADS  Google Scholar 

  19. S. B. Orlinskii, J. Schmidt, P. G. Baranov, V. Lorrmann, I. Riedel, D. Rauh, and V. Dyakonov, Phys. Rev. B: Condens. Matter 77, 115334 (2008).

    ADS  Google Scholar 

  20. R. Helbig, J. Cryst. Growth 15, 25 (1972).

    Article  ADS  Google Scholar 

  21. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Sträsburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Status Solidi B 241, 231 (2004).

    Article  Google Scholar 

  22. O. F. Schirmer, J. Phys. Chem. Solids 29, 1407 (1968).

    Article  ADS  Google Scholar 

  23. R. T. Cox, D. Block, A. Herve, R. Picard, and C. Santier, Solid State Commun. 25, 77 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Romanov.

Additional information

Original Russian Text © R.A. Babunts, N.G. Romanov, D.O. Tolmachev, A.G. Badalyan, V.A. Khramtsov, P.G. Baranov, D. Rauh, V. Dyakonov, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 12, pp. 2296–2303.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babunts, R.A., Romanov, N.G., Tolmachev, D.O. et al. Identification of recombination centers in wide-band-gap crystals and related nanostructures from spin-dependent tunneling afterglow. Phys. Solid State 51, 2437–2445 (2009). https://doi.org/10.1134/S1063783409120026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409120026

Keywords

Navigation