Skip to main content
Log in

Generation of coherent phonons in opaque crystals: A radio engineering analogy

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A model is proposed for generating coherent phonons by ultrashort laser pulses in opaque crystals. The model is based on the radio engineering analogy with two coupled RLC circuits, of which the first circuit corresponds to the electronic subsystem of the crystal and the second circuit corresponds to the lattice sub-system. It is demonstrated that this analogy makes it possible to describe a number of characteristic properties of coherent phonons and facilitates the separation of the contributions from the nonequilibrium charge carriers and the coherent lattice dynamics to the time-resolved reflection signal in opaque crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science (Washington) 247, 1217 (1990).

    Article  Google Scholar 

  2. L. Dhar, J. A. Rogers, and K. A. Nelson, Chem. Rev. (Washington) 94, 167 (1994).

    Google Scholar 

  3. R. Merlin, Solid State Commun. 102, 207 (1997).

    Article  ADS  Google Scholar 

  4. T. Dekorsy, G. C. Cho, and H. Kurz, in Light Scattering in Solids, Ed. by M. Cardona and G. Güntherodt, Vol. III: Fullerenes, Semiconductor Surfaces, and Coherent Phonons (Springer, Berlin, 2000), p. 169.

    Google Scholar 

  5. O. V. Misochko, Zh. Éksp. Teor. Fiz. 119(2), 285 (2001) [JETP 92 (2), 246 (2001)].

    Google Scholar 

  6. R. Glauber, Quantum Optics and Electronics, Ed. C. DeWitt, A. Blandin, and C. Cohen-Tannoudji (Gordon and Breach, New York, 1965; Mir, Moscow, 1966).

    Google Scholar 

  7. D. A. Kirzhnits and Yu. A. Nepomnyashchiĭ, Zh. Éksp. Teor. Fiz. 59(6), 2203 (1970) [Sov. Phys. JETP 32 (6), 1191 (1970)].

    Google Scholar 

  8. H. J. Zeiger, J. Vidal, T. K. Cheng, E. P. Ippen, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B: Condens. Matter 45, 768 (1992).

    ADS  Google Scholar 

  9. G. A. Garrett, T. F. Albrecht, J. F. Whitaker, and R. Merlin, Phys. Rev. Lett. 77, 3661 (1996).

    Article  ADS  Google Scholar 

  10. T. E. Stevens, J. Kuhl, and R. Merlin, Phys. Rev. B: Condens. Matter 65, 144304 (2002).

    Google Scholar 

  11. R. Scholz, T. Pfeifer, and H. Kurz, Phys. Rev. B: Condens. Matter 47, 16229 (1993).

    Google Scholar 

  12. A. V. Kuznetsov and C. J. Stanton, Phys. Rev. Lett. 73, 3243 (1994).

    Article  ADS  Google Scholar 

  13. O. V. Misochko, K. Ishioka, M. Hase, and M. Kitajima, Phys. Lett. A 321, 381 (2004).

    Article  MATH  ADS  Google Scholar 

  14. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillators (Nauka, Moscow, 1981; Dover, New York, 1987).

    Google Scholar 

  15. E. I. Manaev, Fundamentals of Radio and Electronic Engineering (Radio i Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

  16. O. V. Misochko, R. Lu, M. Hase, and M. Kitajima, Zh. Éksp. Teor. Fiz. 131(2), 275 (2007) [JETP 104 (2), 245 (2007)].

    Google Scholar 

  17. O. V. Misochko, M. V. Lebedev, H. Shaeffer, and T. Dekorsy, J. Phys.: Condens. Matter. 19, 406220 (2007).

    Google Scholar 

  18. M. V. Lebedev, O. V. Misochko, T. Dekorsy, and N. Georgiev, Zh. Éksp. Teor. Fiz. 127(2), 308 (2005) [JETP 100 (2), 272 (2005)].

    Google Scholar 

  19. J. Herrmann, J. Opt. Soc. Am. B 11(3), 498 (1994).

    Article  ADS  Google Scholar 

  20. L. A. Fal’kovskiĭ, Usp. Fiz. Nauk 94(1), 3 (1968) [Sov. Phys.—Usp. 11 (1), 1 (1968)].

    Google Scholar 

  21. V. S. Édel’man, Usp. Fiz. Nauk 123(2), 257 (1977) [Sov. Phys.—Usp. 20 (10), 819 (1977)].

    Google Scholar 

  22. J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, IBM J. Res. Dev. 8, 234 (1964).

    Article  Google Scholar 

  23. J. B. Renucci, W. Richter, M. Cardona, and E. Schonherr, Phys. Status Solidi A 60, 299 (1973).

    Article  Google Scholar 

  24. T. K. Cheng. J. Vidal, H. J. Zeiger, G. Dresselhaus, M. S. Dresselhaus, and E. P. Ippen, Appl. Phys. Lett. 59, 1923 (1991).

    Article  ADS  Google Scholar 

  25. M. Hase, K. Mizoguchi, H. Harima, S. Nakashima, and K. Sakai, Phys. Rev. B: Condens. Matter 58, 5448 (1998).

    ADS  Google Scholar 

  26. K. Ishioka, M. Kitajima, and O. V. Misochko, J. Appl. Phys. 100, 093501 (2006).

    Google Scholar 

  27. M. F. DeCamp, D. A. Reis, P. H. Bucksbaum, and R. Merlin, Phys. Rev. B: Condens. Matter 64, 092301 (2001).

    Google Scholar 

  28. M. Hase, M. Kitajima, S. Nakashima, and K. Mizoguchi, Phys. Rev. Lett. 88, 067401 (2002).

    Google Scholar 

  29. O. V. Misochko, M. Hase, and M. Kitajima, Pis’ma Zh. Éksp. Teor. Fiz. 78(2), 85 (2003) [JETP Lett. 78 (2), 75 (2003)].

    Google Scholar 

  30. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, and D. von der Linde, Nature (London) 422, 287 (2003).

    Article  ADS  Google Scholar 

  31. O. V. Misochko, M. Hase, K. Ishioka, and M. Kitajima, Phys. Rev. Lett. 92, 197401 (2004).

    Google Scholar 

  32. É. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Hahy, and D. Reis, Phys. Rev. B: Condens. Matter 72, 060301(R) (2005).

  33. O. V. Misochko, M. Hase, K. Ishioka, and M. Kitajima, Pis’ma Zh. Éksp. Teor. Fiz. 82(7), 478 (2005) [JETP Lett. 82 (7), 426 (2005)].

    Google Scholar 

  34. O.V. Misochko, K. Ishioka, M. Hase, and M. Kitajima, J. Phys.: Condens. Matter 18, 10571 (2006).

    Article  ADS  Google Scholar 

  35. O. V. Misochko, K. Ishioka, M. Hase, and M. Kitajima, J. Phys.: Condens. Matter 19, 156227 (2007).

    Google Scholar 

  36. D. M. Fritz, D. A. Reis, B. Adams, R. A. Akre, J. Arthur, C. Blome, P. H. Bucksbaum, A. L. Cavalieri, S. Engemann, S. Fahy, R. W. Falcone, P. H. Fuoss, K. J. Gaffney, M. J. George, J. Hajdu, M. P. Hertlein, P. B. Hillyard, M. Horn-von-Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S. H. Lee, A. M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, É. D. Murray, A. J. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D. P. Siddons, K. Sokolowski-Tinten, Th. Tschentscher, D. von der Linde, and J. B. Hastings, Science (Washington) 315, 633 (2007).

    Article  ADS  Google Scholar 

  37. G. A. Garrett, A. G. Rojo, A. K. Sood, J. F. Whitaker, and R. Merlin, Science (Washington) 275, 1638 (1997).

    Article  Google Scholar 

  38. E. S. Zijlstra, L. L. Tatarinova, and M. E. Garcia, Phys. Rev. B: Condens. Matter 74, 220301 (2006).

    Google Scholar 

  39. O. V. Misochko, S. V. Andreev, V. O. Kompanets, Yu. A. Matveets, A. G. Stepanov, S. V. Chekalin, and T. Dekorsy, Fiz. Tverd. Tela (St. Petersburg) 49(11), 2070 (2007) [Phys. Solid State 49 (11), 2171 (2007)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lebedev.

Additional information

Original Russian Text © M.V. Lebedev, O.V. Misochko, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 9, pp. 1735–1744.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, M.V., Misochko, O.V. Generation of coherent phonons in opaque crystals: A radio engineering analogy. Phys. Solid State 51, 1843–1852 (2009). https://doi.org/10.1134/S1063783409090133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409090133

PACS numbers

Navigation