Skip to main content
Log in

Optical and magneto-optical properties of nanostructured yttrium iron garnet

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Bulk dense samples of nanostructured yttrium iron garnet Y3Fe5O12 with crystallite sizes of 20–40 nm are prepared by high-pressure torsion from a garnet powder with micron grains. The absorption and Faraday rotation spectra in the IR range and the transverse Kerr effect spectra in the visible spectral range for these samples are measured. The absorption and magneto-optical effect spectra are in agreement with the corresponding spectra of single crystals. The appearance of additional absorption bands at 2 and 3 μm is associated with the violation of the stoichiometry of the nanogarnet and the possible contamination of the initial material. The specific Faraday rotation in the transparency window is approximately 1.5 times smaller than the corresponding quantity for single crystals. The extrema in the Kerr effect spectra coincide with those for single crystals, are smaller in magnitude, and are smeared. On the whole, the prepared bulk samples are transparent in the IR spectral range and exhibit optical and magneto-optical characteristics comparable to the corresponding parameters for single crystals. The high density of point defects of the nanogarnet is primarily due to the violation of the stoichiometry and the valence state of iron ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Randoshkin and A. Ya. Chervonenkis, Applied Magneto-Optics (Énergoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  2. D. L. Wood and J. P. Remeika, J. Appl. Phys. 38, 1038 (1967).

    Article  ADS  Google Scholar 

  3. H. Xu and H. Yang, Mater. Manuf. Processes 23, 1 (2008).

    Article  Google Scholar 

  4. J. W. Lee, J. H. Oh, J. C. Lee, and S. C. Choi, J. Magn. Magn. Mater. 272–276, 2230 (2004).

    Article  Google Scholar 

  5. X. Z. Guo, B. G. Ravi, Q. Y. Yan, R. J. Gambino, S. Sampath, J. Margolies, and J. B. Parise, Ceram. Int. 32, 61 (2006).

    Article  Google Scholar 

  6. R. D. Sanchez, J. Rivas, P. Vaqueiro, M. A. Lopez-Quintela, and D. Caeiro, J. Magn. Magn. Mater. 247, 92 (2002).

    Article  ADS  Google Scholar 

  7. A. A. Valeeva, B. A. Gizhevskii, V. P. Pilyugin, and A. A. Rempel’, Fiz. Met. Metalloved. 99(1), 62 (2005) [Phys. Met. Metallogr. 99 (1), 56 (2005)].

    Google Scholar 

  8. B. A. Gizhevskii, V. D. Zhuravlev, R. G. Zakharov, M. I. Zinigrad, E. A. Kozlov, L. I. Leont’ev, S. V. Naumov, S. A. Petrova, V. P. Pilyugin, A. Ya. Fishman, and N. M. Chebotaev, Dokl. Akad. Nauk 405(4), 489 (2005) [Dokl. Chem. 405 (4–6), 247 (2005)].

    Google Scholar 

  9. T. R. Hinklin, S. C. Rand, and R. M. Laine, Adv. Mater. (Weinheim) 20, 1270 (2008).

    Article  Google Scholar 

  10. E. A. Gan’shina, M. V. Vashuk, A. N. Vinogradov, A. B. Granovsky, V. S. Gushchin, P. N. Shcherbak, Yu. E. Kalinin, A. V. Sitnikov, Chong-Oh Kim, and Cheol Gi Kim, Zh. Éksp. Teor. Fiz. 125(5), 1172 (2004) [JETP 98 (5), 1027 (2004)].

    Google Scholar 

  11. J. Rodrigues-Carvajal, Full Prof.2k: Rietveld Refinement Program, Version 3.20 (Laboratoire Leon Brillouin, CEA Saclay, France, 2005).

    Google Scholar 

  12. A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, M. I. Eremets, I. A. Trojan, and V. V. Artemov, Pis’ma Zh. Éksp. Teor. Fiz. 83(1), 41 (2006) [JETP Lett. 83 (1), 37 (2006)].

    Google Scholar 

  13. Z. V. Gareeva and R. A. Doroshenko, J. Magn. Magn. Mater. 268, 1 (2004).

    Article  ADS  Google Scholar 

  14. F. Lucari, C. Mastrogiuseppe, E. Terrenzio, and G. Tomasseti, J. Magn. Magn. Mater. 20, 84 (1980).

    Article  ADS  Google Scholar 

  15. L. F. Vereshchagin, U. V. Zubova, K. I. Burdina, and G. L. Aparnikov, Dokl. Akad. Nauk SSSR 196, 817 (1971) [Sov. Phys. Dokl. 16, 127 (1971)].

    Google Scholar 

  16. D. A. Zatsepin, V. R. Galakhov, B. A. Gizhevskii, E. Z. Kurmaev, V. V. Fedorenko, A. A. Samokhvalov, and S. V. Naumov, Phys. Rev. B: Condens. Matter 59, 211 (1999).

    ADS  Google Scholar 

  17. R. J. Joseyphus, A. Narayanasamy, A. K. Nigam, and R. Krishnan, J. Magn. Magn. Mater. 296, 57 (2006).

    Article  ADS  Google Scholar 

  18. B. A. Gizhevskiĭ, Yu. P. Sukhorukov, A. S. Moskvin, N. N. Loshkareva, E. V. Mostovshchikova, A. E. Ermakov, E. A. Kozlov, M. A. Uĭmin, and V. S. Gaviko, Zh. ’Eksp. Teor. Fiz. 129(2), 336 (2006) [JETP 102 (2), 297 (2006)].

    Google Scholar 

  19. G. S. Krinchik and M. V. Chetkin, Usp. Fiz. Nauk 98, 3 (1969) [Sov. Phys.—Usp. 12, 307 (1969)].

    Google Scholar 

  20. G. S. Krinchik, E. E. Chepurova, I. M. Kuznetsova, and N. V. Pronina, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 10 (1989).

  21. S. Witekoek, T. J. A. Popma, J. Robertson, and P. F. Bongers, Phys. Rev. B: Solid State 12, 2777 (1975).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Gizhevskiĭ.

Additional information

Original Russian Text © B.A. Gizhevskiĭ, Yu.P. Sukhorukov, E.A. Gan’shina, N.N. Loshkareva, A.V. Telegin, N.I. Lobachevskaya, V.S. Gaviko, V.P. Pilyugin, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 9, pp. 1729–1734.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gizhevskiĭ, B.A., Sukhorukov, Y.P., Gan’shina, E.A. et al. Optical and magneto-optical properties of nanostructured yttrium iron garnet. Phys. Solid State 51, 1836–1842 (2009). https://doi.org/10.1134/S1063783409090121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409090121

PACS numbers

Navigation