Advertisement

Physics of the Solid State

, Volume 51, Issue 8, pp 1758–1764 | Cite as

Two-dimensional nonlinear electromagnetic waves in a carbon nanotube array

  • M. B. BelonenkoEmail author
  • S. Yu. Glazov
  • N. G. Lebedev
  • N. E. Meshcheryakova
Fullerenes and Atomic Clusters

Abstract

The interaction of electromagnetic waves with carbon nanotubes has been investigated theoretically. The dynamics of nonlinear electromagnetic waves is considered in terms of the coupled equations for the classical function of the electron distribution in zigzag carbon nanotubes and the Maxwell equations for an electromagnetic field. The effective equation describing the dynamics of the electromagnetic field is derived. The existence of stable nonlinear electromagnetic waves is confirmed by the results of numerical calculations. The influence of a dc electric field on the wave propagation is analyzed.

PACS numbers

71.27.+a 78.66.Tr 78.67.Ch 78.70.Gq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ch. P. Poole, Jr. and F. J. Owens, Introduction to Nano-technology (Wiley, Hoboken, NJ, United States, 2003; Tekhnosfera, Moscow, 2004).Google Scholar
  2. 2.
    Vision for Nanotechnology Research and Development in the Next Decade, Ed. by M. C. Roco, S. Williams, and P. Alivisatos (Kluwer, Dordrecht, 2000; Mir, Moscow, 2002).Google Scholar
  3. 3.
    S. A. Maksimenko and G. Ya. Slapyan, in Handbook of Nanotechnology. Nanometer Structure: Theory, Modeling, and Simulation, Ed. by A. Lakhtakia (SPIE Press, Bellingham, WA, United States, 2004), p. 145.Google Scholar
  4. 4.
    S. Aubry, Solitons and Condensed Matter Physics, Ed. by A. R. Bishop and T. Schneider (Springer, Berlin, 1979).Google Scholar
  5. 5.
    S. A. Kozlov and S. V. Sazonov, Zh.Éksp. Teor. Fiz. 111(2), 404 (1997) [JETP 84 (2), 221 (1997)].Google Scholar
  6. 6.
    G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Harmann, E. E. B. Campbell, and I. V. Hertel, Phys. Rev. A: At., Mol., Opt. Phys. 60, R777 (1999).ADSGoogle Scholar
  7. 7.
    H. Haken, in Nonlinear Spectroscopy, Ed. by N. Bloembergen (Societa Italiana di Fisica, Bologna, 1977; Mir, Moscow, 1979).Google Scholar
  8. 8.
    Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, CA, United States, 2003; Fizmatlit, Moscow, 2005).Google Scholar
  9. 9.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Izv. Akad. Nauk, Ser. Fiz. 70, 1817 (2006).Google Scholar
  10. 10.
    H. Haken, Synergetics (Springer, Heidelberg, 1978; Mir, Moscow, 1980).zbMATHGoogle Scholar
  11. 11.
    P. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 2002; Tekhnosfera Moscow, 2003).Google Scholar
  12. 12.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, J. Russ. Laser Res. 27, 457 (2006).CrossRefGoogle Scholar
  13. 13.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Izv. Akad. Nauk, Ser. Fiz. 72, 28 (2008).Google Scholar
  14. 14.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Fiz. Tverd. Tela (St. Petersburg) 50(2), 367 (2008) [Phys. Solid State 50 (2), 383 (2008)].Google Scholar
  15. 15.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Izv. Akad. Nauk, Ser. Fiz. 72, 711 (2008).Google Scholar
  16. 16.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Zh. Tekh. Fiz. 78(7), 1 (2008) [Tech. Phys. 53 (7), 817 (2008)].Google Scholar
  17. 17.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Khim. Fiz. 27(12), 64 (2008) [Russ. J. Phys. Chem. B 2 (6), 964 (2008)].Google Scholar
  18. 18.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Proc. SPIE—Int. Soc. Opt. Eng. 7024, 70240U (2008).Google Scholar
  19. 19.
    H. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985; Mir, Moscow, 1988).Google Scholar
  20. 20.
    M. F. Lin and K. W.-K. Shung, Phys. Rev. B: Condens. Matter 50, 17744 (1994).Google Scholar
  21. 21.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Fizmatlit, Moscow, 1979; Butterworth-Heinemann, Oxford, 1981).Google Scholar
  22. 22.
    R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dressel-haus, Phys. Rev. B: Condens. Matter 46, 1804 (1992).ADSGoogle Scholar
  23. 23.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Moscow State University, Moscow, 1999) [in Russian].Google Scholar
  24. 24.
    É. M. Épshteĭn, Fiz. Tverd. Tela (Leningrad) 19(11), 3456 (1977) [Sov. Phys. Solid State 19 (11), 2020 (1977)].Google Scholar
  25. 25.
    F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices (Nauka, Moscow, 1989) [in Russian].Google Scholar
  26. 26.
    S. V. Kryuchkov, Semiconductor Superlattices Subjected to Strong Electric Fields (Peremena, Volgograd, 1992) [in Russian].Google Scholar
  27. 27.
    Solitons, Ed. by R. Bullough and Ph. Caudrey (Springer, Heidelberg, 1980; Mir, Moscow, 1983).zbMATHGoogle Scholar
  28. 28.
    P. W. Kitchenside, P. J. Caudrey, and R. K. Bullough, Phys. Scr. 20, 673 (1979).CrossRefADSGoogle Scholar
  29. 29.
    N. S. Bakhvalov, Numerical Methods: Analysis, Algebra, and Ordinary Differential Equations (Nauka, Moscow, 1975; Mir, Moscow, 1977).Google Scholar
  30. 30.
    I. L. Bogolyubskiĭ and V. G. Makhan’kov, Pis’ma Zh. Éksp. Teor. Fiz. 25(2), 120 (1979) [JETP Lett. 25 (2), 107 (1979)].Google Scholar
  31. 31.
    I. L. Bogolubsky, V. G. Makhankov, and A. B. Shvachka, Phys. Lett. A 63, 225 (1979).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • M. B. Belonenko
    • 1
    Email author
  • S. Yu. Glazov
    • 2
  • N. G. Lebedev
    • 3
  • N. E. Meshcheryakova
    • 1
  1. 1.Laboratory of NanotechnologiesVolgograd Business InstituteVolgogradRussia
  2. 2.Volgograd State Pedagogical UniversityVolgogradRussia
  3. 3.Volgograd State UniversityVolgogradRussia

Personalised recommendations