Skip to main content
Log in

Tunable bulk acoustic wave resonators with the induced piezoelectric effect in a ferroelectric

  • Proceedings of the XVIII All-Russia Conference on Physics of Ferroelectrics (VKS-XVIII) (St. Petersburg, Russia, June 9–14, 2008)
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An electromechanical model of the piezoelectric effect induced in an acoustic resonator based on a ferroelectric film under the action of a dc or weak ac voltage is developed. The basic equation is obtained by expansion of the free energy in a series with respect to the electric induction and the mechanical deformation. The system of electromechanical equations for variable components of the induction and the mechanical deformation involves all linear terms along with the component of the electrostriction nonlinear with respect to the mechanical deformation. These electromechanical equations made it possible to obtain a one-dimensional approximation for the effective parameters of the material: the piezoelectric modulus and the elastic modulus as a function of the strength of the electric field applied to the acoustic layer. Expressions for the controlled electromechanical coupling coefficient and resonance frequencies of the tunable acoustic resonator are found. It is shown that the most significant parameter responsible for the tuning is the nonlinear electros-triction coefficient M, whose magnitude and sign were evaluated from the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. P. Mason, Phys. Rev. 74, 1134 (1948).

    Article  ADS  Google Scholar 

  2. D. A. Berlincourt, D. R. Curran, and H. Jaffe, in Physical Acoustics: Principles and Methods, Ed. by W. P. Mason, Vol. 1: Methods and Devices (Academic, New York, 1964; Mir, Moscow, 1966), Part A, p. 295.

    Google Scholar 

  3. J. M. Pond, S. W. Kirchoffer, W. Chang, J. S. Horwitz, and D. B. Chrisey, Integr. Ferroelectr. 22, 317 (1998).

    Article  Google Scholar 

  4. O. G. Vendik and L. T. Ter-Martirosyan, Zh. Tekh. Fiz. 69(8), 93 (1999) [Tech. Phys. 44 (8), 954 (1999)].

    Google Scholar 

  5. S. Tapper, U. Boettger, and R. Waser, Appl. Phys. Lett. 85, 624 (2004).

    Article  ADS  Google Scholar 

  6. S. Gevorgian, A. Vorobiev, and T. Lewin, J. Appl. Phys. 99, 124112 (2006).

    Google Scholar 

  7. J. Berge, A. Vorobiev, W. Steichen, and S. Gevorgian, IEEE Microwave Wireless Compon. Lett. 17, 655 (2007).

    Article  Google Scholar 

  8. O. G. Vendik and I. B. Vendik, J. Eur. Ceram. Soc. 27, 2949 (2007).

    Article  Google Scholar 

  9. I. B. Vendik, P. A. Turalchuk, O. G. Vendik, and J. Berge, J. Appl. Phys. 103, 014107 (2008).

    Google Scholar 

  10. A. Noeth, T. Yamada, V. O. Sherman, P. Muralt, A. K. Tagantsev, and N. Setter, J. Appl. Phys. 102, 114110 (2007).

    Google Scholar 

  11. G. Ruprecht and W. H. Winter, Phys. Rev. 155, 1019 (1967).

    Article  ADS  Google Scholar 

  12. O. G. Vendik and S. P. Zubko, J. Appl. Phys. 88, 5343 (2000).

    Article  ADS  Google Scholar 

  13. V. Ya. Fritsberg, Phase Transitions in Ferroelectrics (Zinatne, Riga, 1971), p. 117 [in Russian]

    Google Scholar 

  14. G. A. Samara and A. A. Giardini, Phys. Rev. A 140, 954 (1965).

    Article  ADS  Google Scholar 

  15. G. A. Samara, Phys. Rev. 151, 378 (1966).

    Article  ADS  Google Scholar 

  16. R. P. Lowndes and A. Rastogi, J. Phys. C: Solid State Phys. 6, 932 (1973).

    Article  ADS  Google Scholar 

  17. K. M. Lakin, G. R. Kline, and K. T. McCarron, IEEE Trans. Microwave Theory Tech. 41, 2139 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Vendik.

Additional information

Original Russian Text © I.B. Vendik, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 8, pp. 1495–1498.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vendik, I.B. Tunable bulk acoustic wave resonators with the induced piezoelectric effect in a ferroelectric. Phys. Solid State 51, 1586–1589 (2009). https://doi.org/10.1134/S1063783409080101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409080101

PACS numbers

Navigation