Skip to main content
Log in

Hydrogen adsorption on low-index surfaces of B2 titanium alloys

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Systematic first-principles calculations of hydrogen adsorption on two surfaces (001) and (110) of B2 titanium alloys with inclusion of complete relaxation of the system are performed for the first time within the electron-density functional theory. The equilibrium sites of hydrogen on metal surfaces are determined with respect to the surface termination and its orientation. It is shown that the hydrogen adsorption on the (001) surface in the series of titanium alloys under investigation is more preferred on the titanium-terminated surface. The relaxation effects change the adsorption energy by ∼0.10–0.25 eV, although, in general, tendencies revealed for ideal films remain unchanged. Among the hydrogen sites studied on the TiMe(110) surface, the pseudo-threefold-centered F1 site with predominance of titanium atoms is most preferred for the alloys of the beginning of the series (TiFe, TiCo). For the TiNi, TiPd, and TiPt alloys, the adsorption energies in the F1 site and the titanium bridge site are nearly equal. The calculated curves of local and partial densities of states are used to explain the mechanisms of interaction between hydrogen and the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hydrogen in Metals, Ed. by G. Alefeld and J. Volkl (Springer, Heidelberg, 1978; Mir, Moscow, 1981).

    Google Scholar 

  2. S. V. Mankovsky, A. A. Ostroukhov, V. M. Floka, and V. T. Tcherepin, Vacuum 48, 245 (1997).

    Article  Google Scholar 

  3. S. V. Mankovsky and V. T. Cherepin, Metallofiz. Noveĭshie Tekhnol. 19, 19 (1997).

    Google Scholar 

  4. Yu. M. Koroteev, A. G. Lipnitskii, E. V. Chulkov, and I. I. Naumov, Phys. Low-Dimens. Struct., Nos. 9–10, 85 (1998).

  5. Yu. M. Koroteev, A. G. Lipnitskii, and E. V. Chulkov, Phys. Low-Dimens. Struct., Nos. 5–6, 175 (1999).

  6. G. Canto, R. de Coss, and D. A. Papaconstantopoulos, Surf. Rev. Lett. 6, 719 (1999).

    Article  Google Scholar 

  7. G. Canto and R. de Coss, Surf. Sci. 465, 59 (2000).

    Article  ADS  Google Scholar 

  8. Yu. M. Koroteev, A. G. Lipnitskii, E. V. Chulkov, and V. M. Silkin, Surf. Sci. 507–510, 199 (2002).

    Article  Google Scholar 

  9. S. E. Kulkova, D. V. Valujsky, G. Lee, J. S. Kim, and Y. M. Koo, Phys. Rev. B: Condens. Matter 65, 85410 (2002).

    Google Scholar 

  10. G. Lee, J. S. Kim, Y. M. Koo, and S. E. Kulkova, Int. J. Hydrogen Energy 27, 403 (2002).

    Article  Google Scholar 

  11. E. Gonzales, P. Jasen, N. J. Castellani, and A. Juan, Solid State Commun. 131, 81 (2004).

    Article  ADS  Google Scholar 

  12. S. E. Kulkova, V. E. Egorushkin, D. I. Bazhanov, S. V. Eremeev, and S. S. Kulkov, Comput. Mater. Sci. 36, 102 (2006).

    Article  Google Scholar 

  13. A. Eichler, J. Hafner, and G. Kresse, J. Phys: Condens. Matter 8, 7659 (1996).

    Article  ADS  Google Scholar 

  14. G. Kresse and J. Hafner, Surf. Sci. 459, 287 (2000).

    Article  ADS  Google Scholar 

  15. D. E. Jiang and E. A. Carter, Surf. Sci. 457, 85 (2003).

    Article  ADS  Google Scholar 

  16. B. Hammer and J. K. Norskov, Surf. Sci. 343, 211 (1995).

    Article  ADS  Google Scholar 

  17. B. Hammer and M. Scheffler, Phys. Rev. Lett. 74, 3487 (1995).

    Article  ADS  Google Scholar 

  18. P. Kratzer, B. Hammer, and J. K. Norskov, Surf. Sci. 359, 45 (1996).

    Article  ADS  Google Scholar 

  19. P. Blaha, K. Schwarz, G. K. M. Madsen, D. Kvasnicka, and J. Luitz, Wien2k: A Computer Program for Performing Quantum Calculations on Periodic Solids (Vienna University of Technology, Vienna, Austria, 2001).

    Google Scholar 

  20. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993).

    ADS  Google Scholar 

  21. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  22. G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    ADS  Google Scholar 

  23. G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).

    Article  ADS  Google Scholar 

  24. J. P. Perdew and Y. Wang, Phys. Rev. B: Condens. Matter 45, 13244 (1992).

    ADS  Google Scholar 

  25. H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13, 5188 (1976).

    ADS  MathSciNet  Google Scholar 

  26. E. A. Brandes and G. B. Brook, Smithells Metals References Book, 7th ed. (Butterworth-Heinemann, London, 1992).

    Google Scholar 

  27. G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999).

    ADS  Google Scholar 

  28. C. M. Varma and A. J. Wilson, Phys. Rev. B: Condens. Matter 22, 3795 (1980).

    ADS  Google Scholar 

  29. H. Yukawa, Y. Nakatsuka, and M. Morinaga, Sol. Energy Mater. Sol. Cells 62, 75 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Kulkova.

Additional information

Original Russian Text © S.S. Kulkov, S.V. Eremeev, S.E. Kulkova, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 6, pp. 1207–1214.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkov, S.S., Eremeev, S.V. & Kulkova, S.E. Hydrogen adsorption on low-index surfaces of B2 titanium alloys. Phys. Solid State 51, 1281–1289 (2009). https://doi.org/10.1134/S1063783409060316

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409060316

PACS numbers

Navigation