Skip to main content
Log in

Influence of defects in the carbon network on the static polarizability of fullerenes

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The static polarizability of the C60, C70, C80, and C186 fullerenes has been calculated within the semiempirical MNDO approximation implemented in the MOPAC quantum-chemical program package. It is demonstrated that the results obtained are comparable with experimental data and the results of the ab initio B3LYP method using the 6–31G(d, p) basis set. The influence of topological defects (five-, seven-, and eight-membered rings), vacancies produced by removing pentagons, and nitrogen and boron atoms on the geometric parameters and the polarizability of the C60, C240, and C540 fullerenes has been investigated by the MNDO method. It is revealed that the polarizability of the fullerene with topological defects is higher than the polarizability of the perfect icosahedral fullerene. The formation of vacancies in the carbon cage leads to a linear decrease in the polarizability of the fullerene and an increase in the specific polarizability. The polarizability of the heterofullerene with nitrogen or boron atoms spaced apart in the carbon cage is higher than that of the fullerene with heteroatoms located adjacent to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Antoine, P. Dugourd, D. Rayane, E. Benichou, M Broyer, F. Chandezon, and C. Guet, J. Chem. Phys. 110, 9771 (1999).

    Article  ADS  Google Scholar 

  2. I. Compagnon, R. Antoine, M. Broyer, P. Dugourd, J. Lerme, and D. Rayane, Phys. Rev. A: At., Mol., Opt. Phys. 64, 025201 (2001).

    Google Scholar 

  3. S. Itoh, P. Ordejon, D. A. Drabold, and R. M. Martin, Phys. Rev. B: Condens. Matter 53, 2132 (1996).

    ADS  Google Scholar 

  4. V. L. Kuznetsov, A. L. Chuvilin, Yu. V. Butenko, I. Yu. Mal’kov, and V. M. Titov, Chem. Phys. Lett. 222, 343 (1994).

    Article  ADS  Google Scholar 

  5. Z. M. Sheng and J. N. Wang, Carbon 44, 2089 (2006).

    Article  Google Scholar 

  6. D. Ugarte, Carbon 33, 9 (1995).

    Article  Google Scholar 

  7. K. R. Bates and G. E. Scuseria, Theor. Chem. Acc. 99, 29 (1998).

    Google Scholar 

  8. M. I. Heggie, M. Terrones, B. R. Eggen, G. Jungnickel, R. Jones, C. D. Latham, P. R. Briddon, and H. Terrones, Phys. Rev. B: Condens. Matter 57, 13339 (1998).

    ADS  Google Scholar 

  9. H. Terrones and M. Terrones, J. Phys. Chem. Solids 58, 1789 (1997).

    Article  ADS  Google Scholar 

  10. C. He, N. Zhao, C. Shi, Z. Du, J. Li, L. Cui, and F. He, Scr. Mater. 54, 1739 (2006).

    Article  Google Scholar 

  11. D. Jonsson, P. Norman, K. Ruud, H. Ågren, and T. Helgaker, J. Chem. Phys. 109, 572 (1998).

    Article  ADS  Google Scholar 

  12. R.-H. Xie, G. W. Bryant, L. Jensen, J. Zhao, and V. H. Smith, J. Chem. Phys. 118, 8621 (2003).

    Article  ADS  Google Scholar 

  13. Ph. Lambin, A. A. Lucas, and J.-P. Vigneron, Phys. Rev. B: Condens. Matter 46, 1794 (1992).

    ADS  Google Scholar 

  14. A. Mayer, Ph. Lambin, and R. Langlet, Appl. Phys. Lett. 89, 063117 (2006).

  15. Yung Hang Hu and Eli Ruckenstein, J. Chem. Phys. 123, 214708 (2005).

    Google Scholar 

  16. G. K. Gueorguiev, J. M. Pacheco, and D. Tománek, Phys. Rev. Lett. 92, 215501 (2004).

    Google Scholar 

  17. M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4899 (1977).

    Article  Google Scholar 

  18. A. A. Vooetyuk, Zh. Strukt. Khim. 29, 138 (1988).

    Google Scholar 

  19. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  20. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter 37, 785 (1988).

    ADS  Google Scholar 

  21. P. Fuentealba, Phys. Rev. A: At., Mol., Opt. Phys. 58, 4232 (1998).

    ADS  Google Scholar 

  22. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  23. R. Langlet, N. Geuquet, A. Mayer, L. Henrard, Ph. Lambin, M. Arab, F. Picaud, M. Devel, and C. Girardet, in Program and Book of Abstracts of the Joint International Conference “Nanocarbon and Nanodiamond 2006,” St. Petersburg, Russia, 2006 (St. Petersburg, 2006), p. 63.

  24. Gun-Do Lee, C. Z. Wang, Eujioon Yoon, Nong-Moon Hwang, Doh-Yeon Kim, and K. M. Ho, Phys. Rev. Lett. 95, 205501 (2005).

  25. A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, and R. M. Nieminen, Chem. Phys. Lett. 418, 132 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Bulusheva.

Additional information

Original Russian Text © O.V. Sedel’nikova, L.G. Bulusheva, A.V. Okotrub, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 4, pp. 815–821.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedel’nikova, O.V., Bulusheva, L.G. & Okotrub, A.V. Influence of defects in the carbon network on the static polarizability of fullerenes. Phys. Solid State 51, 863–869 (2009). https://doi.org/10.1134/S1063783409040404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409040404

PACS numbers

Navigation