Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Manganese-doped ZnSiAs2 chalcopyrite: A new advanced material for spintronics

  • 76 Accesses

  • 13 Citations

Abstract

A new spintronics material with the Curie temperature above room temperature, the ZnSiAs2 chalcopyrite doped with 1 and 2 wt % Mn, is synthesized. The magnetization, electrical resistivity, magnetoresistance, and the Hall effect of these compositions are studied. The temperature dependence of the electrical resistivity follows a semiconducting pattern with an activation energy of 0.12–0.38 eV (in the temperature range 124 K ≤ T ≤ 263 K for both compositions). The hole mobility and concentration are 1.33, 2.13 cm2/V s and 2.2 × 1016, 8 × 1016 cm−3 at T = 293 K for the 1 and 2 wt % Mn compositions, respectively. The magnetoresistance of both compositions, including the region of the Curie point, does not exceed 0.4%. The temperature dependence of the magnetization M(T) of both compositions exhibits a complicated character; indeed, for T ≤ 15 K, it is characteristic of superparamagnets, while for T > 15 K, spontaneous magnetization appears which correspond to a decreased magnetic moment per formula unit as compared to that which would be observed upon complete ferromagnetic ordering of Mn2+ spins or antiferromagnetic ordering of spins of the Mn2+ and Mn3+ ions. Thus, for T > 15 K, it is a frustrated ferro- or ferrimagnet. It is found that, unlike the conventional superparamagnets, the cluster moment μ c in these compositions depends on the magnetic field: ∼12000–20000μB for H = 0.1 kOe, ∼52–55μB for H = 11 kOe, and ∼8.6–11.0μB at H = 50 kOe for the compositions with 1 and 2 wt % Mn, respectively. The specific features of the magnetic properties are explained by the competition between the carrier-mediated exchange and superexchange interactions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76(2), 323 (2004).

  2. 2.

    H. Ohno, Science (Washington) 281(5391), 951 (1998).

  3. 3.

    F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B: Condens. Matter 57(4), R2037 (1998).

  4. 4.

    K. M. Edmonds, K. Y. Wang, R. P. Campion, A. C. Neumann, N. R. S. Farley, B. L. Gallagher, and C. T. Foxon, Appl. Phys. Lett. 81(18), 4991 (2002).

  5. 5.

    K. M. Edmonds, P. Boguslawski, K. Y. Wang, R. P. Campion, S. N. Novikov, N. R. S. Farley, B. L. Gallagher, C. T. Foxon, M. Sawicki, T. Dietl, M. Buongiorno Nardelli, and J. Bernholc, Phys. Rev. Lett. 92(3), 03720 (2004).

  6. 6.

    G. A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, and K Sato, Jpn. J. Appl. Phys. 39(10A), L949 (2000).

  7. 7.

    G. A. Medvedkin, K. Hirose, T. Ishibashi, T. Nishi, V. G. Voevodin, and K. Sato, J. Cryst. Growth 236(4), 609 (2002).

  8. 8.

    S. Choi, G.-B. Cha, S. C. Hong, S. Cho, Y. Kim, J. B. Ketterson, S.-Y. Jeong, and G.-C. Yi, Solid State Commun. 122(3–4), 165 (2002).

  9. 9.

    R. V. Demin, L. I. Koroleva, S. F. Marenkin, S. G. Mikhaoelov, V. M. Novotortsev, V. T. Kalinnikov, T. G. Aminov, R. Szymczak, H. Szymczak, and M. Baran, Pis’ma Zh. Tekh. Fiz. 30(21), 81 (2004) [Tech. Phys. Lett. 30 (11), 924 (2004)].

  10. 10.

    L. I. Koroleva, V. Yu. Pavlov, D. M. Zashchirinskiĭ, S. F. Marenkin, S. A. Varnavskiĭ, R. Szymczak, V. Dobrovol’skiĭ, and L. Killinskiĭ, Fiz. Tverd. Tela (St. Petersburg) 49(11), 2022 (2007) [Phys. Solid State 49 (11), 2121 (2007)].

  11. 11.

    V. A. Ivanov, T. G. Aminov, V. M. Novotortsev, and V. T. Kalinnikov, Izv. Akad. Nauk, Ser. Khim. 11b, 49 (2004).

  12. 12.

    V. M. Novotortsev, I. V. Fedorchenko, T. A. Kupriyanova, L. I. Koroleva, R. Shimchak, and S. F. Marenkin, Khim. Tekhnol. (Moscow), No. 9, 385 (2007).

  13. 13.

    I. V. Fedorchenko, T. A. Kupriyanova, S. F. Marenkin, and A. V. Kochura, Zh. Neorg. Khim. 53(7), 1224 (2008) [Russ. J. Inorg. Chem. 53 (7), 1139 (2008)].

  14. 14.

    E. Z. Meilikov and R. M. Farzetdinova, Phys. Rev. B: Condens. Matter 75(5), 052402 (2007).

  15. 15.

    H. Akai, Phys. Rev. Lett. 81(14), 3002 (1998).

  16. 16.

    H. Akai, T. Kamatani, and S. Watanabe, J. Phys. Soc. Jpn. 69(Suppl. A), 119 (2000).

  17. 17.

    P. Mahadevan and A. Zunger, Phys. Rev. Lett. 88(4), 047205 (2002).

Download references

Author information

Correspondence to L. I. Koroleva.

Additional information

Original Russian Text © L.I. Koroleva, D.M. Zashchirinskiĭ, T.M. Khapaeva, S.F. Marenkin, I.V. Fedorchenko, R. Szymczak, B. Krzumanska, V. Dobrovol’skiĭ, L. Kilanskiĭ, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 2, pp. 286–291.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koroleva, L.I., Zashchirinskiĭ, D.M., Khapaeva, T.M. et al. Manganese-doped ZnSiAs2 chalcopyrite: A new advanced material for spintronics. Phys. Solid State 51, 303–308 (2009). https://doi.org/10.1134/S1063783409020164

Download citation

PACS numbers

  • 75.50.Pp
  • 75.50.Lk
  • 72.25.-b