Skip to main content
Log in

Stationary magnetization states in a thin magnetic layer of a nanopillar multilayer structure subjected to a spin-polarized current and a magnetic field

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The static and dynamic equilibrium states of spins in a thin layer of a conducting nanosized column containing two magnetic layers are analyzed theoretically. The magnetization of one of the layers is assumed to be fixed. The analysis is performed in terms of a macrospin model with allowance for the Slonczewski-Berger torque transfer. Bifurcation diagrams are constructed describing the change of spin states in the current-field plane. The relation of the specific features of varying magnetization and the spin precession frequency to bifurcations in the dynamic system under study is discussed. It is shown that the soft creation of cycles with a zero amplitude is accompanied by precession at a finite frequency and that the precession frequency becomes zero when a cycle with a finite amplitude disappears or arises in a jump. Comparative analysis is performed for two orientations of a magnetic field (parallel and perpendicular to the easy magnetization axis in the layer plane) in the presence of a current with a given spin orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

    Article  ADS  Google Scholar 

  2. L. Berger, Phys. Rev. B: Condens. Matter 54, 9353 (1996).

    ADS  Google Scholar 

  3. J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, Phys. Rev. Lett. 84, 3149 (2000).

    Article  ADS  Google Scholar 

  4. F. J. Albert, J. A. Katine, R. A. Buhrman, and D. C. Ralph, Appl. Phys. Lett. 77, 3809 (2000).

    Article  ADS  Google Scholar 

  5. J. Grollier, V. Cros, A. Hamzic, J. M. George, H. Jaffres, A. Fert, G. Faini, J. Ben Youssef, and H. Legal, Appl. Phys. Lett. 78, 3663 (2001).

    Article  ADS  Google Scholar 

  6. S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature (London) 425, 380 (2003).

    Article  ADS  Google Scholar 

  7. J. E. Wegrowe, D. Kelly, Y. Jaccard, Ph. Guittienne, and J. Ph. Ansermet, Europhys. Lett. 45, 626 (1999).

    Article  ADS  Google Scholar 

  8. M. Tsoi, A. G. Jansen, J. Bass, W. C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998).

    Article  ADS  Google Scholar 

  9. M. D. Stiles and A. Zangwill, Phys. Rev. B: Condens. Matter 66(1), 014 407 (2002).

    Google Scholar 

  10. A. Shpiro, P. M. Levy, and S. Zhang, Phys. Rev. B: Condens. Matter 67, 104 430 (2003).

    Google Scholar 

  11. C. Heide, P. E. Zilberman, and R. J. Elliott, Phys. Rev. B: Condens. Matter 63, 064 424 (2001).

    Google Scholar 

  12. E. M. Epshtein, Yu. V. Gulyaev, P. E. Zilberman, and A. I. Krikunov, cond-mat/0607592 (2006).

  13. A. K. Zvezdin and A. V. Khval’kovskiĭ, Fiz. Tverd. Tela (St. Petersburg) 49(4), 711 (2007) [Phys. Solid State 49 (4), 746 (2007)].

    Google Scholar 

  14. T. Devolder, A. Tulapurkar, Y. Suzuki, C. Chappert, P. Crozat, and K. Yagami, J. Appl. Phys. 98, 053 904 (2005).

    Google Scholar 

  15. F. B. Mancoff, N. D. Rizzo, B. N. Engel, and S. Tehrani, Nature (London) 437, 393 (2005).

    Article  ADS  Google Scholar 

  16. A. N. Slavin and V. S. Tiberkevich, Phys. Rev. B: Condens. Matter 74, 104 401 (2006).

    Google Scholar 

  17. K. J. Lee, O. Redon, and B. Dieny, Appl. Phys. Lett. 86, 22 505 (2005).

  18. A. Fert, V. Cross, J. M. George, J. Grollier, H. Jaffres, A. Hamzic, and A. Vaures, J. Magn. Magn. Mater. 272–276, 1706 (2004).

    Article  Google Scholar 

  19. A. Thiaville, Y. Nakatani, J. Miltat, and N. Vernier, J. Appl. Phys. 95, 7049 (2004).

    Article  ADS  Google Scholar 

  20. J. Miltat, G. Albuquerque, A. Thiaville, and C. Vouille, J. Appl. Phys. 89, 6982 (2001).

    Article  ADS  Google Scholar 

  21. Z. Li and S. Zhang, Phys. Rev. B: Condens. Matter 68, 024 404 (2003).

    Google Scholar 

  22. D. Berkov and N. Gorn, Phys. Rev. B: Condens. Matter 71, 052 403 (2005).

    Google Scholar 

  23. J. Xiao, A. Zangwill, and M. D. Stiles, Phys. Rev. B: Condens. Matter 72, 014 446 (2005).

    Google Scholar 

  24. R. Bonin, G. Bertotti, C. Serpico, I. D. Mayergoyz, and M. d’Aquino, J. Magn. Magn. Mater. 316, 919 (2007).

    Article  ADS  Google Scholar 

  25. G. Bertotti, A. Magni, R. Bonin, I. D. Mayergoyz, and C. Sepgico, J. Magn. Magn. Mater. 290–291, 522 (2005).

    Article  Google Scholar 

  26. G. Bertotti, C. Serpico, I. D. Mayergoyz, A. Magni, M. D’Aquino, and R. Bonin, Phys. Rev. Lett. 94, 127206 (2005).

    Google Scholar 

  27. G. Bertotti, C. Serpico, I. D. Mayergoyz, R. Bonin, and M. D’Aquino, J. Magn. Magn. Mater. 316, 285 (2007).

    Article  ADS  Google Scholar 

  28. A. D. Kent, B. Ozylimaz, and E. del Barco, Appl. Phys. Lett. 84, 3897 (2004).

    Article  ADS  Google Scholar 

  29. R. Bonin, G. Bertotti, I. D. Mayergoyz, and C. Serpico, J. Appl. Phys. 99, 08G508 (2006).

    Google Scholar 

  30. A. K. Zvezdin and K. A. Zvezdin, Zh. Éksp. Teor. Fiz. 122,(4), 879 (2002) [JETP 95 (4), 762 (2002)].

    Google Scholar 

  31. V. Tiberkevich and A. Slavin, Phys. Rev. B: Condens. Matter 75, 014 440 (2007).

    Google Scholar 

  32. A. Malozemoff and J. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979; Mir, Moscow, 1982).

    Google Scholar 

  33. Yu. V. Gulyaev, P. E. Zil’berman, A. I. Krikunov, A. I. Panas, and É. M. Épshteĭn, Pis’ma Zh. Éksp. Teor. Fiz. 85(3), 192 (2007) [JETP Lett. 85 (3), 160 (2007)].

    Google Scholar 

  34. L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, and L. O. Chua, in World Scientific Series on Nonlinear Science, Part I: Methods of Qualitative Theory in Nonlinear Dynamics), Singapore, 1998), Ser. A, Vol. 4.

  35. J. Guckemheimer and Ph. Holmes, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields (Springer, Berlin, 1983).

    Google Scholar 

  36. V. N. Belykh, Soros. Obraz. Zh., No. 1, 115 (1997).

  37. J. C. Sankey, P. M. Braganca, A. G. F. Garcia, I. N. Krivorotov, R. A. Buhrman, and D. C. Ralph, Phys. Rev. Lett. 96, 227 601 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Chinenkov.

Additional information

Original Russian Text © V.I. Korneev, A.F. Popkov, M.Yu. Chinenkov, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 1, pp. 118–128.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korneev, V.I., Popkov, A.F. & Chinenkov, M.Y. Stationary magnetization states in a thin magnetic layer of a nanopillar multilayer structure subjected to a spin-polarized current and a magnetic field. Phys. Solid State 51, 127–136 (2009). https://doi.org/10.1134/S1063783409010168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409010168

PACS numbers

Navigation